Molecular Distributions and Stable Carbon Isotopic Composition of Diacids, Oxoacids, and α-dicarbonyls in PM_{2.5} from Underground Coal Fire Field in Inner Mongolia, North China: Implications for Anthropogenic Origin of Azelaic Acid

ZHANJIE XU, XIAOMAI ZHAO, PEISEN LI, ZHICHAO DONG, RUOYU SUN, PINGQING FU AND CHANDRA MOULI PAVULURI

Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University

Presenting Author: xuzhanjie@tju.edu.cn

To understand the characteristics of chemical components and diacids, oxoacids and α -dicarbonyls in atmospheric aerosols at underground coal fire environment, we collected fine aerosols (PM_{2.5}) from Wuhai, Inner Mongolia, North China, where the underground coal fire occurs severely. PM25 samples were analyzed for the measurements of carbonaceous components, stable carbon isotopic composition (δ^{13} C) of total carbon (TC), and molecular distribution and compound-specific $\delta^{13}C$ of diacids, oxoacids and α -dicarbonyls. Oxalic acid (C₂) was the most abundant diacid species, accounting for 44-63% (avg. 51%) of total diacids, followed by phthalic acid (Ph) (14%). Azelaic acid (C_0) was the third most (7%) abundant diacid, followed by succinic (C_4) and malonic (C_3) acids. The correlations between C_2 and ωC_2 , ωC_3 and C_3 were significant, but not with SO_4^{2-} , which indicate that C₂ was mainly derived by *in-situ* secondary formation and/or primary emission from the underground coal combustion at local scale and less aged. C₉ diacid showed a significant correlation with C_2 , C_3 , ωC_2 and ωC_3 as well as with Ph acid and C₃/C₄ mass ratios. Such correlations demonstrate that C₉ diacid should have been mainly derived from in-situ secondary formation from its precursors emitted from underground coal fires. In addition, $\delta^{13}C$ of C₉ (-27.0 ± 0.9‰) was comparable with that of Ph acid and similar to the δ^{13} C of organic matter in coals, which support its origin of underground coal fire. However, further research is needed to confirm the relative importance of coal combustion for C₉ diacid loading in atmospheric aerosols.