Net carbon dioxide removal via electrolytic seawater mineralization

ERIKA LA PLANTE¹, XIN CHEN², STEVEN BUSTILLOS², ARNAUD BOUISSONNIE², THOMAS TRAYNOR², DAVID JASSBY², LORENZO CORSINI³, DANTE SIMONETTI² AND GAURAV SANT²

¹University of Texas at Arlington ²University of California, Los Angeles ³Equatic, Inc.

Presenting Author: erika.laplante@uta.edu

The trapping of carbon dioxide (CO₂) as an aqueous (bi)carbonate ion (e.g., HCO_3^{-} , CO_3^{2-}) or as a mineral solid is attractive because of favorable thermodynamics, and the safety and permanence of storage. We have proposed an approach to rapidly precipitate Ca- and Mg- carbonates and hydroxides from seawater to achieve CO₂ removal. This EquaticTM process electrolytically forces mineral carbonate precipitation thereby consuming prevalent CO₂ that is dissolved in seawater by locking it within carbonate minerals, and simultaneously producing alkaline mineral hydroxides that when dissolved in seawater enable the drawdown of atmospheric CO₂ into the seawater, representing net CO2 removal. Specifically, the net reaction for CaCO₃ (aragonite) precipitation is $Ca^{2+} + CO_2 +$ $2OH^{-} \rightarrow CaCO_3 + H_2O$. The precipitation of magnesium carbonate is kinetically limited, thus, alkalinity forces the precipitation of Mg²⁺ as Mg(OH)₂ (brucite): Mg²⁺ + 2OH⁻ \rightarrow Mg(OH)₂. Therefore, 1 mol of CO₂ is captured by 2 mol of OH⁻ through the production of 1 mol CaCO₃. On the other hand, only 1.2 mol of OH⁻ are required per 1 mol CO₂ stored as dissolved HCO_3^{-} and CO_3^{2-} ions. This is because when dissolved into seawater, every mol of Mg(OH)2 leads to the absorption of up to ~1.7 mol of CO₂(actual ratio depends on pH). The formation of magnesium carbonates, e.g., nesquehonite (MgCO₃·3H₂O) and hydromagnesite (Mg₅(CO₃)₄(OH)₂·4H₂O) can also be achieved by equilibrating alkalinized seawater with air (i.e., ~400 ppm CO_2), yielding two limiting cases: (*Case 1*) $CaCO_3 + Mg(OH)_2$ (i.e., 11% solid + 89% aqueous CO₂), and (Case 2) CaCO₃ + MgCO₃ production (i.e., 100% solid CO₂ sequestration). Here, we describe the CO₂ mass balances of the process. This analysis offers a quantitative basis for assessing the CO₂ removal potential of the technological approach and developing a robust measurement, reporting, and verification (MRV) strategy. In addition, we describe the pilot project at AltaSea at the Port of Los Angeles in California which will demonstrate an energy intensity of 2.5 MWh per t CO₂ removed, identify the necessary data for carbon accounting and potential design inefficiencies or improvements, and inform design of full-scale operations.