Atom-trap trace analysis of ⁴¹Ca/Ca down to the 10⁻¹⁷ level

MR. WEIWEI SUN, PHD¹, TONG-YAN XIA¹, SVEN EBSER¹, WEI JIANG², GUO-MIN YANG², HUI-MIN ZHU¹, YUN-CHONG FU^{3,4}, FANG HUANG², GUO-DONG MING⁵, TIAN XIA¹ AND ZHENG-TIAN LU²

¹School of Physical Sciences, University of Science and Technology of China
²University of Science and Technology of China
³Institute of Earth Environment, Chinese Academy of Sciences
⁴Xi'an AMS Center of IEECAS, Joint Xi'an AMS Center between IEECAS and Xi'an Jiaotong University
⁵CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China

Presenting Author: wwsun@mail.ustc.edu.cn

Calcium is a major element in the biosphere and lithosphere. Its cosmogenic isotope ⁴¹Ca, with a half-life of 99 thousand years, can trace environmental processes at an age scale beyond the reach of ¹⁴C. A wide range of potential applications, including burial dating of bones and exposure dating of rocks, pose an analytical challenge as they require measuring ⁴¹Ca/Ca values in the range of $10^{-16} - 10^{-15}$. Accelerator Mass Spectrometry (AMS) has been used to measure ⁴¹Ca/Ca down to the 10⁻¹⁵ level in natural samples¹, where it was limited by isobar interferences. Here we show an Atom Trap Trace Analysis (ATTA)² method for ⁴¹Ca/Ca analysis, in which individual ⁴¹Ca atoms are selectively captured into a magneto-optical trap and counted by detecting their fluorescence. ATTA is immune to contamination from other isotopes, elements, or molecules. We realize a precision of 12% at the level of 10^{-16} and a detection limit at 10⁻¹⁷, well below the distribution of natural abundances, and analyzed samples of bones, rocks, and seawater. The accuracy of the ⁴¹Ca/Ca results is verified by measuring a series of reference samples in the range of $5 \times 10^{-16} - 4 \times 10^{-13}$. This table-top method has met the requirements to explore the proposed ⁴¹Ca tracer applications, and is poised for studies of calcium-containing samples of Middle- and Late-Pleistocene in geoscience and archeology³.

[1] Wallner, A. *et al.* Accelerator mass spectrometry with ANU's 14 million volt accelerator. *Nucl. Instrum. Methods Phys. Res. B* **534**, 48-53 (2023).

[2] To be published in Nature Physics (2023)

[3] Henning, W. *et al.* Calcium-41 concentration in terrestrial materials: prospects for dating of Pleistocene samples. *Science* **236**, 725-727 (1987)