Nitrate-dependent anaerobic methane oxidation (N-DAMO) as a bioremediation strategy for waters affected by agricultural runoff

MARTYNA GLODOWSKA, ANNABLE LEGIERSE, QUINTEN STRUIK, GARRETT SMITH, MAIDER J. ECHEVESTE MEDRANO, MIKE JETTEN, ANNELIES J. VERAART AND CORNELIA WELTE

Radboud University

Presenting Author: mglodowska@science.ru.nl

Agricultural drainage ditches are subjected to high anthropogenic nitrogen input leading to eutrophication and greenhouse gas emissions. Nitrate-dependent anaerobic methane oxidation (N-DAMO) has been proposed as a promising remediation strategy to decrease methane (CH₄) emissions and nitrate (NO₃) concentration simultaneously. Until now, however, there was no study assessing the efficiency of the N-DAMO process. Therefore, we aimed to evaluate the potential of N-DAMO to remove excess NO₃⁻ and decrease CH₄ release from agricultural drainage ditches common in the Dutch landscape. Microcosm experiments were conducted using sediment and surface water collected from three different sites: a sandy-clay ditch (SCD), a freshwater-fed peatland ditch (FPD), and a brackish peatland ditch (BPD). The microcosms were inoculated with an N-DAMO enrichment culture dominated by Candidatus Methanoperedens and Candidatus Methylomirabilis and supplemented with ${}^{13}CH_4$ and ${}^{15}NO_3$. The concentration of CH_4 , formation of ¹³CO₂ and evolution of N species were followed over the incubation period. Additionally, archaeal and bacterial community composition was analyzed halfway through the experiment when the NO_3^- reduction was the most prominent. The results showed that a significant decrease in CH_4 and NO_3^{-1} concentration was only observed in the BPD sediment. In freshwater sediments (FPD and SCD) the effect of N-DAMO inoculation on CH₄ and NO₃⁻ removal was negligible, likely because N-DAMO microorganisms were outcompeted by heterotrophic denitrifiers consuming NO₃⁻ much faster. Overall, our results suggest that bioaugmentation with N-DAMO might be a potential strategy for decreasing NO₃⁻ concentrations and CH4 emission in brackish ecosystems with increasing agricultural activities where the native microbial community is incapable of efficient denitrification.