Deep segregations of ultra-depleted melts in abyssal pyroxenite layers

CARLOTTA FERRANDO1,2, GIULIO BORGHINI3, CAMILLA SANI, PHD STUDENT 2, FELIX GENSKE4, ANDREAS STRACKE5 AND ALESSIO SANFILIPPO2

1DISTAV Università di Genova
2Università di Pavia
3Dipartimento di Scienze della Terra, University of Milano
4Westfälische Wilhelms-Universität Münster
5Universität Münster

Presenting Author: ottaferrando@gmail.com

Ultra-depleted melts may form by melting residual mantle portions that have experienced prior melting processes. Geochemical records of ultra-depleted melt percolation and concomitant mantle refertilization have been recognized in abyssal peridotites and ophiolitic mantle sections. So far, however, direct evidence of ultra-depleted melts in erupted Mid-Ocean Ridge Basalts or as crystallized melt veins in abyssal peridotites is missing. Here, we report evidence for segregations of such ultra-depleted melts in the form of discrete pyroxenite layers within abyssal peridotites from the Doldrums fracture zone (8°N) at the Mid Atlantic Ridge. The pyroxenites crystallized from highly incompatible element depleted melts in the lithospheric mantle at more than 27 km beneath the ridge axis (at T ~1250°C using the geothermometer by [1]), with little or no modification by interaction with the host mantle. Following their emplacement, the pyroxenites experienced exhumation, decompression and partial re-equilibration under plagioclase-facies conditions at ~1060°C and ~15 km depth. Notably, despite their high Hf isotope ratios (ƐHf = 40.3), which indicate a formation from a source that experienced ancient melt depletion (high Lu/Hf), their Nd isotopes plot in the field of MORBs (ƐNd = 10.6), implying a long-time evolution with low Sm/Nd. We relate these compositions to a mantle source that experienced partial melting and reacted with migrating melts, prior to recent melting under the Mid-Atlantic Ridge. This ancient process of refertilization produced local enrichments in incompatible elements, allowing re-melting of refractory, ancient mantle residues. This study underlines the potential of discrete pyroxenite layers to preserve the chemical fingerprint of melts from single ultra-depleted and refertilized mantle components that are not passive elements in the asthenosphere, but may contribute to the chemistry of melts at the surface.