Atmospheric CO₂ drawdown during lithification of slag-dominated artificial ground

DR. JOHN MACDONALD, CONNOR BROLLY, SAMMY GRIFFIN AND ROBIN HILDERMAN

University of Glasgow

Presenting Author: john.macdonald.3@glasgow.ac.uk

Legacy deposits of by-product slag from iron and steel making create significant volumes of artificial ground around the world. Composed mainly of calcium-silicate mineral phases, experimental and modelling studies have shown the potential of slag for capturing atmospheric CO₂ by mineralisation [1,2]. Artificial ground poses challenges around ground stability and ecotoxic element release but slag-dominated artificial ground also offers opportunities for atmospheric CO₂ drawdown. In this contribution, we document the lithification of legacy slag deposits – conversion of loose gravelly slag material into a rock-like mass through cementation with calcite via drawdown of atmospheric CO₂ at two case study sites (Glengarnock and Warton, UK). We present field, X-Ray Diffraction and carbon isotope data from these case study sites to document the lithification of slag-dominated artificial ground through mineralisation of atmospheric CO₂ as a cementing phase; we present scanning electron microscope data to show the microstructural evolution of this lithification. As well as drawdown of atmospheric CO₂, this lithification process has potential to help stabilise unconsolidated artificial ground and immobilise pollutants.

References