High precision ¹⁴²Nd isotope measurements using a Nu TIMS

CLAUDINE ISRAEL¹, CATHERINE CHAUVEL², TU-HAN LUU¹, EDWARD INGLIS³ AND MR. DANIEL JAMES ROBERTS⁴

¹Université Paris Cité, Institut de Physique du Globe de Paris, CNRS UMR 7154

²Institut de Physique du Globe de Paris

³School of Earth and Environmental Sciences, Cardiff University ⁴Nu Instruments

Presenting Author: israel@ipgp.fr

The ¹⁴⁶Sm-¹⁴²Nd isotopic system ($T_{1/2}$ =103 Ma) is a powerful tracer of the formation and evolution of continents and mantle reservoirs formed during the first 500 Ma of Earth's history. Hadean material is very rare at the surface of the Earth but some might still be preserved in the mantle and be sampled by recent volcanism. However, the expected range of ¹⁴²Nd/¹⁴⁴Nd variations in modern volcanic rocks is very small. To detect minute anomalies requires measurements with a routine precision better than 5 ppm (2sd).

The Nu TIMS is equipped with a zoom optics system and 16 fixed Faraday detectors with $10^{11} \Omega$ amplifier resistors. We benefit from its flexibility to perform 5-line multi-dynamic analyses of Nd isotopes [1]. For 800 ng of Nd loaded on double Re filaments, a typical analysis is composed of 800 cycles and measures a 7 V-signal of ¹⁴²Nd⁺ for 18 hours. It produces five static and three dynamic ratios per cycle for each Nd isotope. Combined with an extended statistical counting, such analyses reach a standard error on ¹⁴²Nd/¹⁴⁴Nd ratios as low as 1 ppm (2se) and a steady reproducibility of 3.4 ppm (2sd, n=30), for the Nd standard solution Rennes-Ames, over 15 months. The reproducibility is also improved relative to previous studies on TIMS [e.g., 2] for the other Nd isotopes with 5.9, 3.9, 4.2 and 8.5 ppm for ¹⁴³Nd/¹⁴⁴Nd, ¹⁴⁵Nd/¹⁴⁴Nd, ¹⁴⁸Nd/¹⁴⁴Nd and ¹⁵⁰Nd/¹⁴⁴Nd ratios, respectively. Similar results are obtained for the JNDi-1 reference standard, usually used as a reference for the terrestrial composition for 142,145,148,150 Nd/144 Nd ratios. We also analysed rock standards (BCR-2, BHVO-2, BE-N, RGM-1, BIR-1) and we obtain the same reproducibility as for the synthetic standards and ¹⁴²Nd isotopic values within error of the terrestrial reference.

Our results demonstrate that a precision better than 4 ppm can be routinely obtained on a Nu TIMS. This opens the possibility to trace very small variations in ¹⁴²Nd/¹⁴⁴Nd and detect minor traces of Hadean material in the present-day Earth mantle.

[1] Luu et al. (Chemical Geology, 2022), [2] Garçon et al. (Chemical Geology, 2018)