Dolostone as a reliable tracer of seawater lithium isotope composition

PROF. XIAO-MING LIU, PHD¹, XIAO-FENG LIU^{2,3}, XI-KAI WANG¹, XINYU LIU⁴ AND SHIKUI ZHAI³

¹University of North Carolina at Chapel Hill

²Hainan University

³Ocean University of China

⁴Zhanjiang Branch of China National Offshore Oil Corporation

Presenting Author: xiaomliu@unc.edu

We present new findings on the evolution of the carbon and silicon cycles over geologic time through the lithium isotope composition (δ^7 Li) of seawater¹. Our study reports δ^7 Li values in a suite of Neogene dolostones (23–3.4 Ma, n = 39) from the South China Sea². Dolostone δ^7 Li values have increased from 24.9‰ to 30.1‰ over the Neogene, which confirms the observed ~5‰ increase in Neogene seawater δ^7 Li and overlaps with previously published foraminifera records. Importantly, our results suggest that fabric-retentive dolostones provide seawater δ^7 Li records even after early diagenesis and offer a highresolution dolostone record as an alternative to fossil and other calcite carbonate records. We anticipate that our findings will be useful in understanding changes in seawater δ^7 Li and continental weathering in the Precambrian global carbon cycle through early marine diagenetic dolostones with fabric textures that were abundant in the Proterozoic Eon.

References:

- Cao C., Bataille C.P., Song H., Wu H., Tierney K., Saltzman M., Korte C., Zhang Z., Liu X-M. (2022) Persistent Late Permian to Early Triassic warmth linked to enhanced reverse weathering. Nature Geoscience, 15: 832–838.
- Liu X-F., Liu X-M., Wang X-K.&, Liu X., Zhai S. (2023) Dolostone as a new tracer of seawater lithium isotope composition. Communications Earth & Environment, 10.1038/s43247-023-00711-x.