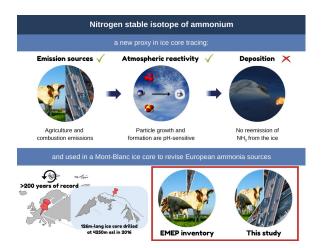
## 200 years of NH<sub>3</sub> inventory in Europe inferred from <sup>15</sup>N of NH<sub>4</sub><sup>+</sup> in Mont-Blanc ice core with unexpected recent combustion-related emissions

ALEXIS LAMOTHE<sup>1</sup>, PETE AKERS<sup>2</sup>, PATRICK GINOT<sup>3</sup>, SARAH ALBERTIN<sup>4,5</sup>, NICOLAS CAILLON<sup>6</sup>, ANJA EICHLER<sup>7</sup>, ADRIEN GILBERT<sup>8</sup> AND JOEL SAVARINO<sup>6</sup>

<sup>1</sup>Université Grenoble Alpes
<sup>2</sup>Trinity College Dublin
<sup>3</sup>Institut de Recherche pour le Développement
<sup>4</sup>LATMOS
<sup>5</sup>IGE
<sup>6</sup>IGE, Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP
<sup>7</sup>University of Bern
<sup>8</sup>CNRS

Presenting Author: alexis.lamothe@univ-grenoble-alpes.fr

Today, anthropogenic emissions of ammonia (NH<sub>3</sub>) exceed natural emissions causing substantial impacts on radiative forcing, ecosystems, and biodiversity (Sutton et al., 2011). To mitigate these consequences and their associated costs, NH<sub>3</sub> abatement is becoming a priority (Gu et al., 2021). Existing European NH<sub>3</sub> inventories suggest emissions from fertilizers and animal manure to be the main NH<sub>3</sub> source through the last decades (European Environment Agency, 2021). However, a growing body of evidence argues against presumed proportions of sources in NH<sub>3</sub> inventories (Chen et al., 2022).


Ice cores are well-suited archives of past atmospheric composition. We developed a method for extracting  $NH_4^+$ , the deposited form of  $NH_3$ , and analysing its  $^{15}N$  isotopic composition in ice cores. Applying it to an ice core from the Col Du Dôme glacier (CDD, 4250 m asl, Mt-Blanc), we can reconstruct  $NH_3$  changes regarding its atmospheric reactivity and its emission sources since the preindustrial era in Europe.

Here we present the history of  $\delta^{15}$ N(NH<sub>4</sub><sup>+</sup>) in the CDD ice core the offering first inventory NH<sub>3</sub> sources in Western Europe for 200 years. During the 19<sup>th</sup> century, NH<sub>3</sub> emissions decreased from an agricultural share of 60% to 35% by 1900. From 1900 onwards, the evolution of agricultural techniques certainly explains the measured increase in agriculture-induced emissions until the 1950s.

After 1950s, a large increase of  $NH_4^+$  concentration in the ice is accompanied with higher combustion-related  $NH_3$ contribution. For 2010-2016, only 38% of total emissions is explained by agriculture, in strong disagreement with the EMEP inventory (95%).

Our findings demonstrate that the agriculture emission abatement policies have had substantial results in diminishing its contribution to  $NH_3$  emissions while, the Euro5 and Euro6 policies unintendedly conducted to  $NH_3$  production to such extent that it can become the main source of  $NH_3$  in city centres (Elser et al., 2018).

In a desire to control air quality, our measurements show that public policies must now support a reduction in  $NH_3$  emissions from vehicular, industrial and biomass combustion.

