Chromium mineralization during deep continental subduction

PENGJIE CAI1, JINGSUI YANG2, DONGYANG LIAN1, SOUVIK DAS3, WEIWEI WU1, YU YANG1 AND HAITAO MA4

1Nanjing University
2Center for Advanced Research on Mantle (CARMA), Key Laboratory of Deep-Earth Dynamics, Institute of Geology, Chinese Academy of Geological Sciences
3Nanjing University, State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering
4School of Earth Sciences and Engineering, Nanjing University

Presenting Author: caipengjie@nju.edu.cn

It is widely accepted that chromium (Cr) is a highly refractory element. The traditional view suggests that the mineralization of chromium is the result of mantle partial melting or melt-rock interaction in the shallow upper mantle. Several recent studies show that Cr-rich minerals or rocks can also be formed due to deep mantle upwelling in an oceanic subduction zone or spreading center. However, the possibility of Cr-mineralization in continental subduction zones is still poorly studied. The critical scientific question is: what nature and sources of fluids can lead to the activation, migration, and enrichment of Cr during the continental deep subduction? Here we report voluminous chromite-bearing Si-rich fuchsite quartzites in the Luofengpo ultramafic complex from the North Qaidam ultrahigh-pressure (UHP) metamorphic belt. The SiO₂ content of fuchsite varies from 48.44 to 50.24 wt.%, Cr₂O₃ ranges from 4.49 to 6.30 wt.%, and Si of fuchsite varies from 3.36 to 3.40 p.f.u (based on 11 oxygen atoms). According to the temperature (650-700 °C) during the peak period of UHP metamorphism in the Luofengpo area, the calculated pressure of fuchsite ranges from 3.38 to 3.83 GPa. Zircon U-Pb dating of chromite-bearing Si-rich fuchsite quartzites yields a formation age is ~450-420 Ma, comparable to the peak age of UHP metamorphism in the North Qaidam. Additionally, chromite is characterized by high content of zinc (ZnO=1.0~1.5%) and high value of Cr# (85-88), indicating that crystallization is related to fluid metasomatism. Considering the regional tectonic setting, the Cr-rich fluids were possibly derived from a hybrid melt which originated in a mantle wedge environment during deep continental subduction.