The atmospheric component in diamonds: post-eruption contamination or subduction-related ?

PROF. DANIELE L. PINTI, PHD¹, LUCILLE DAVER² AND HÉLÈNE BUREAU³

¹Geotop & Université du Québec à Montréal ²Université du Québec à Montréal ³IMPMC

Presenting Author: pinti.daniele@uqam.ca

Mantle-derived fibrous, mono- and polycrystalline diamonds contains noble gases that isotopically are the result of mixing between three sources: the mantle, lithospheric and eventually the primordial one [1]; the crust; and the atmosphere. This last component has been often related to post-eruptive contamination [2]. Yet, the ratios of ${}^{4}\text{He}/{}^{i}X$ (where ${}^{i}X$ is the primordial isotopes ²⁰Ne, ³⁶Ar, ⁸⁴Kr and ¹³⁰Xe) are roughly from 50 to 125 times the present-day atmosphere values. During eons these ratios should have not changed dramatically. Primordial noble gas amounts in the atmosphere were fixed during early catastrophic degassing episode(s). Contrarily to the radiogenic 40 Ar*, the 4 He – even if abundantly produced in the terrestrial crust - is transient in the atmosphere at equilibrium between crustal production and atmospheric escape. If we assume recent incorporation of air by diffusion - following the classical Graham's Law - expected enrichments for the ⁴He/ⁱX ratios will be 1-2 order of magnitude lower than the observed ones. However, seawater - possibly regassed in the mantle by subduction and partitioned by solubility at disequilibrium with carbonatitic or silicic melts -could explain most enrichment patterns. This hypothesis would imply that the so-called "subduction barrier" is quasi inexistent for all noble gases, even the lighter ones such as ⁴He, and that mantle feeding diamonds is recording past subduction.

[1] Broadley, Kagi, Burgess, Zedgenizov, Mikhail, Almayrac & Sumino (2018). *Geochem. Perspect. Lett.* 8, 26-30.

[2] Basu, Jones, Verchovsky, Kelley & Stuart (2013). *Earth-science Rev.* 126, 235-249.