Severe changes in the marine environment across the Cretaceous— Paleogene boundary in the Danish Basin: Constraints from the combined Cd-Cr isotope system

JESPER ALLAN FREDERIKSEN, PHD¹, NICOLAS THIBAULT², GEOFFREY GILLEAUDEAU³, CHRISTIAN J BJERRUM¹ AND ROBERT FREI¹

 ¹Department of Geosciences and Natural Resource Management, Section of Geology, University of Copenhagen
²Department of Geosciences and Natural Resource Management, University of Copenhagen
³George Mason University

Presenting Author: jaf@ign.ku.dk

Cadmium (Cd) isotope signatures (δ^{114} Cd) deduced from seawaters, and from modern and ancient marine deposits are often used as a proxy for bioproductivity and for micronutrient cycling. Chromium (Cr) isotope signatures (δ^{53} Cr) deduced from seawaters and from modern and ancient marine deposits have been proposed as a useful tracer for ocean redox conditions and oxygenation. The Cretaceous-Paleogene (K/Pg) boundary is characterized by one of the Earth's five big mass extinctions, a meteor impact (Chicxulub), large igneous eruptions (Deccan Traps), and abrupt sea level changes. This study contributes the first combined Cd-Cr tracer applied to marine carbonates from three stratigraphic sections in the Danish Basin across the K/Pg boundary, and we link the tracer to palaeobioproductivity and ocean redox conditions. The measured δ^{114} Cd values range between -0.28‰ and +0.27‰ with an average of +0.05‰ \pm 0.24 (25, n=87). The $\delta^{53} Cr_{raw}$ values range between -0.03‰ and +0.94‰ with an average of +0.51‰ \pm 0.50 (2 σ , n=81). An only moderate positive relationship between $\delta^{114}Cd$ values and $\delta^{53}Cr$ values (R²=0.33) reveals that these two isotope systems are controlled by different processes. Nutrients and bioproductivity control the δ^{114} Cd values, and redox processes control the δ^{53} Cr values in the marine realm. The Late Maastrichtian White Chalks from the Danish Basin reveal relatively consistent positively fractionated Cd and Cr isotope signatures, which indicate a period with high bioproductivity and enhanced oxygenation. The isotopic signatures of Cd and Cr show a negative shift in the end-Maastrichtian, which corresponds to severe changes in the marine environment. Across the K/Pg boundary and in the transition layer (Fish Clay), δ^{114} Cd and δ^{53} Cr consistently exhibit values close to the values of continental crust, which indicate a period of reduced bioproductivity, if any, and/or strong detrital influence on the carbonate inventory. In the Early Danian, the marine carbonates reveal δ^{114} Cd values primarily negative or near zero, which supports previous studies showing a slow recovery of bioproductivity after the K/Pg mass extinction. The combined Cd-Cr isotope system is proposed as a useful reconstruction tool for bioproductivity and ocean oxygenation