Accurate and Precise determination of Pb isotope ratio by single collector QQQ-ICP-MS: Application to environmental samples

DR. ARIJEET MITRA, PHD^{1,2}, IRAVATI RAY³, DR. RESHMI DAS³ AND DR. SAMBUDDHA MISRA⁴

¹Indian Institute of Science Bangalore ²Indian Institute of Science, Bangalore

³Jadavpur University

⁴Indian Institute of Science

Presenting Author: arijeetmitra@iisc.ac.in

We have developed a new method for accurate and precise determination of Pb isotope ratios (²⁰⁸Pb/²⁰⁶Pb and ²⁰⁷Pb/²⁰⁶Pb) in environmental samples utilizing a single step column purification and subsequent determination by single collector quadrupole plasma mass spectrometery (SC-QQQ-ICP-MS; AgilentTM 8900). Our improved column method is characterized by low blanks $(0.4\pm0.2 \text{ pg}; n=9)$, high yield $(93.4\pm1.2\%; 2\sigma, n=9)$ and isotopic fractionation free Pb elution utilizing small volume (600µL) of 6 mol L⁻¹ HCl. This method is optimized for complex matrices such as seawater, dust, and sediment samples. We utilized 0.23 ng of Pb per analysis resulting in a total Pb consumption of 0.46 ng when analyzed in duplicate. The key advantages of our Pb isotope determination method are sub pico-gram levels of procedural blanks, rapidity of sample processing and analysis time (172s), low mass requirement (0.23ng per analysis), and a relatively high tolerance for potential matrix mismatch.

Quantitative separation of Pb from matrix elements was done by a single-step anion exchange chromatographic method utilizing teflon micro columns (~250µl wet resin volume), Biorad AG-1X8 (chloride form, 200-400 mesh) anion exchange resin. The average Pb isotopic composition of pure NIST 981 $(^{208}\text{Pb}/^{206}\text{Pb}=2.1681\pm0.0034, ^{207}\text{Pb}/^{206}\text{Pb}=0.9146\pm0.0014, 2\sigma,$ n=40) determined over 40 analytical sessions (n=294) is identical values (²⁰⁸Pb/²⁰⁶Pb=2.1681±0.0008, to certified 207Pb/206Pb=0.9144±0.0005). Additionally, column processed NIST 981 loaded in pure form (²⁰⁸Pb/²⁰⁶Pb=2.1678±0.0018, ²⁰⁷Pb/²⁰⁶Pb=0.9144±0.0007, n=3) and dopped in seawater matrix (²⁰⁸Pb/²⁰⁶Pb=2.1695 (Pb:Na=1:10⁶ ng/ng) \pm 0.0058, ²⁰⁷Pb/²⁰⁶Pb=0.9136 ± 0.0011, n=19) are analytically indistinguishable from certified values. We report an external reproducibility of 0.3% RSD for ²⁰⁸Pb/²⁰⁶Pb and 0.5% RSD for ²⁰⁷Pb/²⁰⁶Pb, determined through repeat analysis (n=21) of multiple aliquots of ab-initio processed and column eluted NIST SRM 8704 buffalo river sediment. Comparison of Pb isotope ratios (²⁰⁸Pb/²⁰⁶Pb and ²⁰⁷Pb/²⁰⁶Pb) of column processed natural samples (soil, dust, and plant tissues) determined by our SC-ICP-MS method and established MC-ICP-MS method are statistically indistinguishable (Δ^{208} Pb/²⁰⁶Pb=0.004, Δ^{207} Pb/²⁰⁶Pb=0.001). To summarize, we have established a low blank, high precision and accurate method for rapid analysis of Pb isotope ratios

(²⁰⁸Pb/²⁰⁶Pb and ²⁰⁷Pb/²⁰⁶Pb) from mass-limited samples. This method is applicable to diverse environmental samples and utilizes readily available instrumentation.