Accurate and Precise determination of Pb isotope ratio by single collector QQQ-ICP-MS: Application to environmental samples

DR. ARIJEET MITRA, PHD1,2, IRAVATI RAY3, DR. RESHMI DAS3 AND DR. SAMBUDDHA MISRA4

1Indian Institute of Science Bangalore
2Indian Institute of Science, Bangalore
3Jadavpur University
4Indian Institute of Science
Presenting Author: arijeetmitra@iisc.ac.in

We have developed a new method for accurate and precise determination of Pb isotope ratios ($^{208}\text{Pb}/^{206}\text{Pb}$ and $^{207}\text{Pb}/^{206}\text{Pb}$) in environmental samples utilizing a single step column purification and subsequent determination by single collector quadrupole plasma mass spectrometry (SC-QQQ-ICP-MS; Agilent™ 8900). Our improved column method is characterized by low blanks (0.4±0.2 pg; n=9), high yield (93.4±1.2%; 2σ, n=9) and isotopic fractionation free Pb elution utilizing small volume (600µL) of 6 mol L$^{-1}$ HCl. This method is optimized for complex matrices such as seawater, dust, and sediment samples. We utilized 0.23 ng of Pb per analysis resulting in a total Pb consumption of 0.46 ng when analyzed in duplicate. The key advantages of our Pb isotope determination method are sub pico-gram levels of procedural blanks, rapidity of sample processing and analysis time (172s), low mass requirement (0.23ng per analysis), and a relatively high tolerance for potential matrix mismatch.

Quantitative separation of Pb from matrix elements was done by a single-step anion exchange chromatographic method utilizing teflon micro columns (~250µl wet resin volume), Biorad AG-1X8 (chloride form, 200–400 mesh) anion exchange resin. The average Pb isotopic composition of pure NIST 981 ($^{208}\text{Pb}/^{206}\text{Pb}=2.1681±0.0034,$ $^{207}\text{Pb}/^{206}\text{Pb}=0.9146±0.0014,$ 2σ, n=40) determined over 40 analytical sessions (n=294) is identical to certified values ($^{208}\text{Pb}/^{206}\text{Pb}=2.1681±0.0008,$ $^{207}\text{Pb}/^{206}\text{Pb}=0.9144±0.0005$). Additionally, column processed NIST 981 loaded in pure form ($^{208}\text{Pb}/^{206}\text{Pb}=2.1678±0.0018,$ $^{207}\text{Pb}/^{206}\text{Pb}=0.9144±0.0007,$ n=3) and dopped in seawater matrix (Pb:Na=1:106 ng/ng) ($^{208}\text{Pb}/^{206}\text{Pb}=2.1695 ± 0.0058,$ $^{207}\text{Pb}/^{206}\text{Pb}=0.9136 ± 0.0011,$ n=19) are analytically indistinguishable from certified values. We report an external reproducibility of 0.3% RSD for $^{208}\text{Pb}/^{206}\text{Pb}$ and 0.5% RSD for $^{207}\text{Pb}/^{206}\text{Pb}$, determined through repeat analysis (n=21) of multiple aliquots of ab-initio processed and column eluted NIST SRM 8704 buffalo river sediment. Comparison of Pb isotope ratios ($^{208}\text{Pb}/^{206}\text{Pb}$ and $^{207}\text{Pb}/^{206}\text{Pb}$) of column processed natural samples (soil, dust, and plant tissues) determined by our SC-ICP-MS method and established MC-ICP-MS method are statistically indistinguishable ($\Delta^{208}\text{Pb}/^{206}\text{Pb}=0.004,$ $\Delta^{207}\text{Pb}/^{206}\text{Pb}=0.001$). To summarize, we have established a low blank, high precision and accurate method for rapid analysis of Pb isotope ratios ($^{208}\text{Pb}/^{206}\text{Pb}$ and $^{207}\text{Pb}/^{206}\text{Pb}$) from mass-limited samples. This method is applicable to diverse environmental samples and utilizes readily available instrumentation.