Geochemical mobility associated to gold and base metal mineralization of Mangodara sector, in southern Burkina Faso, Banfora greenstone belt (West Africa Craton)

BERNADIN GNAMOU, HERMANN ILBOUDO AND SÉTA NABA NABA

Université Joseph KI-ZERBO

Presenting Author: bernadingnamou1610@gmail.com

In the Mangodara sector within the Banfora greenstones belt our study focus on geochemical assessment of major and multielement and implying analysis and interpretation of principal component. Gold and base metal mineralization is hosted in highly metamorphic altered felsic (metarhyolite) and intermediate (metadacite and metaandesite) volcanic formations. Mineralogy reveals aluminous assemblage made up of staurolitekyanite -pyrophyllite that are interpreted to represent the metamorphosed equivalent of aluminous hydrothermal alteration. Associated felsic and intermediate volcanic rocks are respectively enriched in Fe₂O₃ and K₂O; Fe₂O₃, K₂O, MgO, Al₂O₃, CaO, P₂O₅ and Fe₂O₃, MgO, CaO and depleted in MgO, Al₂O₃, CaO, P₂O₅, SiO₂, Na₂O, TiO₂. SiO₂, Na₂O, TiO₂ and SiO₂, Na₂O, K₂O. Al₂O₃ and TiO₂ are immobile in metadacites. Mineralized metaandesites show Fe₂O₃ and K₂O enrichment and MgO, Al₂O₃, CaO, SiO₂ depletion. Al₂O₃ depletion in mineralized kyanite-staurotide bearing metarhyolites suggest the minerals are corroded. Mineralized metarhyolites show enrichment in Au, Ag, Ba, Bi, Cr, Cu, Eu, La, Mo, Ni, Pb, S, Sc, V and depletion in As Sb Co, Sn, Zn while mineralized metaandesites show enrichment in Au, Ag, As, Mo, S, Sb and depletion in Co, Sn, Zn, Bi, Cr, Cu, Eu, Ni, Pb, Sc. Ba, La, V are immobile in metaandesites. finally Ag, As, Sb, Bi, Sn appear as geochemical vector for gold exploration in the study area since gold mineralization is characterized Au+Ba+Cu+Eu+La+Mo+Ni+S association in metarhyolites and Au+S+Sb+As+Ag+Bi in metaandesites.