Ni and Mo isotope evolution of the Late Cretaceous ocean

MINGZHAO SUN1, COREY ARCHER1, FLORIAN SCHOLZ2, TIM SWEERE1 AND DEREK VANCE3

1ETH Zürich
2GEOMAR Helmholtz Centre for Ocean Research Kiel
3Institute of Geochemistry and Petrology, ETH Zurich

Presenting Author: mingzhao.sun@erdw.ethz.ch

Nickel (Ni) isotopes are an emerging tool for understanding the biogeochemistry of the oceans [1,2], in particular the size of the manganese (Mn)-oxide sedimentary sink that removes light Ni from the dissolved pool [3]. But they have yet to be applied extensively to Earth history. Here, we present a new Ni abundance and isotope record for the Late Cretaceous. This period of time saw the Cenomanian-Turonian Anoxic Event (OAE 2), the last major global oceanic anoxic event of the Mesozoic [4]. The OAE-2 was preceded by the Mid-Cenomanian Event (MCE), considered to be a point of no return in the evolution of the Cenomanian ocean and atmosphere [5], and punctuated by the re-oxygenation and cooling of the Plenus Cold Event (PCE) [4]. The record derives from core SN°4 in the Tarfaya Basin, a proto-North Atlantic coastal upwelling region similar to modern upwelling settings [6]. Today, sediments from these settings record the d60Ni of the global ocean, at 1.33‰ [1,2].

Nickel isotopes in organic-rich sediments from the Paleozoic and Mesozoic all suggest a contemporary ocean with a lighter isotope composition than today, implying a smaller light isotope sink to Mn-oxide-rich sediments [7]. The new 3 Myr high-resolution record presented here extends from the Early Cenomanian to the Late Turonian. The sediment data suggest that seawater d60Ni, as well as d98Mo [6], increased after the MCE, with relatively constant values of around +1.0‰ and +1.6‰, respectively, during OAE2. During the PCE, however, the data suggest that seawater d60Ni reached the modern value of around +1.3‰ for the first time. We will further explore the potential mechanisms for the observed evolution of seawater d60Ni, and the evolution of the Mn-oxide sink for Ni, over the Late Cretaceous.