Unique △¹⁷O-NO₃⁻ in Arctic Ocean Atmosphere: Influence of Sea Ice–Derived enhancement of OH and HO_X

YANLIN ZHANG

Nanjing University of Information Science and Technology Presenting Author: dryanlinzhang@outlook.com

Oxygen isotope anomaly of nitrate (Δ^{17} O-NO₃) contributes to understanding the atmospheric nitrogen chemistry in the polar oceans. Here, Δ^{17} O-NO₃⁻ of the aerosol samples was analyzed based on a cruise from Shanghai, China, to the Arctic Ocean to explore the nitrate formation mechanisms. Δ^{17} O-NO₃ decreased with the increase of latitude, especially when after entering the Arctic Circle. Δ^{17} O-NO₃⁻ (e.g., 11.50~21.23‰) was extremely low while crossing the sea ice-covered Arctic Ocean. This is most likely influenced by the combined enhancement of hydroxyl (OH) and peroxy (HO₂+RO₂) radicals derived by the sea ice under the permanent sunlight period. In addition, the obvious increase in the Δ^{17} O-NO₃ of return trip with shortened daytime indicated the advantage of the night pathways (NO₃ related) with the higher Δ^{17} O endmembers. The mutation of Δ^{17} O-NO₃ can reflect the change of NOx conversion pathways to nitrate, and it can be more sensitive to the change of radical chemistry related to atmospheric oxidation.