The Northeast Atlantic breakup (IODP Exp. 396): A case study for modeling the evolution of mantle source mineralogy during continental rifting

EMILY H. CUNNINGHAM¹, SARAH LAMBART¹, PENGYUAN GUO², SAYANTANI CHATTERJEE³, CHRISTIAN TEGNER⁴, SVERRE PLANKE^{5,6}, CHRISTIAN BERNDT⁷, CARLOS ALVAREZ ZARIKIAN⁸, PETER BETLEM^{5,9}, HENK BRINKHUIS¹⁰, MARIALENA E. CHRISTOPOULOU¹¹, IRINA Y. FILINA¹², JOOST FRIELING¹³, DUSTIN T. HARPER¹, MORGAN T JONES⁵, JACK LONGMAN¹⁴, JOHN M. MILLETT⁷, GEOFFROY T.F. MOHN¹⁵, SCHERER P. REED¹¹, NATALIA VARELA¹⁶, WEIMU XU¹⁷, STACY L YAGER¹⁸, AMAR AGARWAL¹⁹, GRAHAM ANDREWS²⁰, JOYEETA BHATTACHARYA²¹, VINCENT J CLEMENTI²², ERIC C FERRÉ²³, REINA NAKAOKA²⁴ AND MENGYUAN WANG²⁵

¹University of Utah

²Institute of Oceanology, Chinese Academy of Sciences ³Niigata University ⁴Aarhus University ⁵University of Oslo ⁶Volcanic Basin Energy Research (VBER) ⁷GEOMAR ⁸IODP ⁹UNIS ¹⁰NIOZ ¹¹Northern Illinois University ¹²University of Nebraska ¹³University of Oxford ¹⁴University of Oldenburg ¹⁵University of Cergy-Pontoise ¹⁶Virginia Tech ¹⁷University College Dublin ¹⁸Ball State University ¹⁹Indian Institute of Technology ²⁰West Virginia University ²¹University of Oklahoma ²²Rutgers University

²³University of Louisiana at Lafayette

²⁴Kobe University

²⁵Sun Yat-Sen University

Presenting Author: emily.h.cunningham@utah.edu

International Ocean Discovery Program (IODP) Expedition 396 sampled the continent-ocean transition of the Mid-Norwegian Margin, an area known to have produced voluminous magmatism during the last break-up phase of Pangea. A highly fertile mantle source is one of the leading hypotheses to explain the large volume of magma that erupted in the region throughout the rifting process [1]. Over the past decade, first-row transition elements (FRTEs) have gained popularity as tracers of mantle sources mineralogy [e.g., 2,3], as their partition coefficients between melt and mantle assemblages are close to 1. This behavior effectively preserves FRTE ratios (e.g., Mn/Fe, Mn/Zn, Zn/Fe, and Co/Fe) of the source during melting and fractionation processes [3].

We developed a new model to constrain mantle source mineralogy. The main input parameters are (1) basalt FRTE concentrations and their standard deviations, the FRTE ratios of the source provided in Lang & Lambart [3], and (2) randomly produced mineral assemblages assuming, the mantle source is composed of five main phases (olivine, clinopyroxene, orthopyroxene, garnet, and spinel). Using a Monte Carlo-inspired approach, we determine which assemblages can produce the observed combined FRTE ratios of the basalts.

When applied to samples of basaltic basement collected during Expedition 396, our model shows the bulk mineralogy of the source changes during the rifting process. Sites interpreted as representative of the onset (U1566) and the end (U1573) of rifting both present a source dominated by olivine that must also contain spinel, while the mantle source during the peak of magmatism (sites U1571 & U1572) is characterized by enrichment in garnet and pyroxenes. Our results demonstrate that modal variations played a role in the magmatic activity that occurred during Northern Atlantic rifting. The extent to which these variations might reflect lithological heterogeneities will be explored in future work. This model can be applied to basalts globally as a valuable tool across the mantle petrology community to better quantify mantle heterogeneity.

[1] Planke et al., 2022, doi: 10.14379/iodp.pr.396.2021

[2] Le Roux et al. 2015, doi: 10.2138/am-2015-5215

[3] Lang & Lambart, 2022, doi: 10.1016/j.chemgeo.2022.121137