Gas phase reaction of trace iodine-129 for determination by ICP-DRC-MS/MS

DR. MAKOTO MATSUEDA, PHD. 1,2 , JO AOKI 1,2 , KAZUMA KOARAI 2 , MOTOKI TERASHIMA 3 AND YOSHITAKA TAKAGAI 1

¹Fukushima University

Presenting Author: kaz.vill.boy@gmail.com

Long-lived iodine-129 (129 I: $t_{1/2} = 1.57 \times 10^7$ years) provides important information as a tracer to estimate geochemical mobility of radioisotopes discharged from nuclear activities. An accelerator mass-spectrometry (AMS), typical analytical method of 129I has been widely applied to understanding the environmental radioactivity. AMS is not suitable for screening of a large number of samples by limited availability machine worktime of its few facilities and the time-consuming purification process of 129 I. Inductively coupled plasma mass-spectrometry (ICP-MS) is capable of high-throughput data acquisition, whereas the application is limited to samples including relatively higher $^{129}I/^{127}I$ which was caused by primary interferences at m/z $129 (^{129}\text{Xe}^+ \text{ and } ^{127}\text{IH}_2^+)$. To remove the interferences, the dynamic reaction cell (DRC) which is gas phase reaction device in ICP-MS is used in this study. As far, 129Xe+ can be removed by O₂ gas. In addition, ICP-tandem mass spectrometry (ICP-MS/MS) suppressed formation of polyatomic ions of ¹²⁷IH₂⁺. The ¹²⁹I/¹²⁷I ratio of <10⁻⁹ level was achieved by previous study; however, lower level of 129I/127I ratio to further precisely discriminate interferences ($^{127}\mathrm{IH_2}^+$ and $^{129}\mathrm{Xe}^+$) is required to apply for various environmental samples.

In this study, we investigated gas phase reactions for the discriminate interferences ($^{129}\text{Xe}^+$ and $^{127}\text{IH}_2^+$) and $^{129}\text{I}^+$ in the DRC via ICP–MS/MS to achieve a further low ratio of $^{129}\text{I}/^{127}\text{I}$. Various mono-gases were individually introduced into the DRC; however, the background counts at m/z 129 in a test solution coexisting with an excess amount of ^{127}I could not be suppressed caused by remaining either $^{129}\text{Xe}^+$ or $^{127}\text{IH}_2^+$. Here, O_2 – CO_2 gas mixture was introduced into the DRC, indicating the lowest counts at m/z 129 by removing the interferences simultaneously. We successfully determined spiked ^{129}I values in rainwater samples using this method, and the results were agreed with spiked amounts.

²Japan Atomic Energy Agency

³Japan Atomic Energy Agency (JAEA)