Shelf pyrite weathering as negative feedback to glacial pCO₂ during the Eocene-Oligocene Transition

WEIQI YAO¹, STEFAN MARKOVIC², ADINA PAYTAN³, ANDREA M ERHARDT⁴ AND ULRICH G. WORTMANN⁵

¹Southern University of Science and Technology
²University of Toronto Scarborough
³University of California, Santa Cruz
⁴University of Kentucky
⁵University of Toronto
Presenting Author: yaowq@sustech.edu.cn

The Eocene-Oligocene transition (EOT) is characterized by a global cooling trend, falling sea levels, and the onset of Antarctic glaciation. Previous studies have investigated the interactions and feedbacks between ocean circulation, weathering, and atmospheric CO₂ levels during this time, but the role of biogeochemical sulfur cycling on climate change remains largely unexplored. Here we show that the emergence of icehouse conditions is coeval with declining marine sulfate S and O isotope values [1]. We posit that the change in marine sulfate isotope ratios is best explained by oxidative weathering of subaerially exposed shelf sediments during sea-level lowstands [2], which transfers sulfur from the sedimentary pyrite reservoir to the marine dissolved sulfate reservoir. Glacial lowstandinduced pyrite weathering proceeds through reactions similar to acid mine drainage, generating sulfuric acid that further liberates CO₂. Mass balance calculations suggest that the magnitude of sulfuric acid triggered CO2 release across the EOT is sufficient to affect the marine carbonate system. Depending on the specific reaction sequence, shelf pyrite weathering has the potential to raise pCO₂ (e.g., pyrite oxidation has raised pCO₂ by 10 ppm at the end of the last ice age [3]), acting as a negative feedback mechanism to stabilize ice-sheet growth. Similar feedback responses of sulfur cycling to glaciations have also happened in other geological times [4, 5].

[1] Yao et al. (2021), Earth Planet. Sci. Lett. 568, 117015.

[2] Miller et al. (2020), Sci. Adv. 6, aaz1346.

[3] Tsan et al. (2022), Goldschmidt 2022.

[4] Torres et al. (2017), Proc. Natl. Acad. Sci. 114, 8716–8721.

[5] Kölling et al. (2019), Nat. Geosci. 12, 929-934.