Dynamic biogeochemical carbon cycle in response to massive manganese carbonate deposits during Cryogenian interglacial period

JIAYI AI¹, SANDRA SILJESTRÖM², NINGNING ZHONG³, JIANFA CHEN⁴, TIEGUAN WANG¹, QIU NANSHENG¹ AND SIMON GEORGE⁵

¹State Key Laboratory of Petroleum Resources and Prospecting, College of Geosciences, China University of Petroleum-Beijing ²RISE Research Institutes of Sweden

³College of Geosciences, China University of Petroleum-Beijing
⁴College of Geoscience, China University of Petroleum (Beijing)
⁵Macquarie University, Australia

Presenting Author: jiayiai hdr@163.com

The Cryogenian interglacial manganese (Mn) carbonate deposits hosted in the Lower Member of the Datangpo Formation (DTP-1) black shales in South China have been interpreted to form predominantly through microbially-mediated processes (Yu et al., 2019). In this study, we suggest that massive metallogenesis of Mn as carbonate phase may have a potential impact on Neoproterozoic carbon cycle by serving as a special sink of bio-essential element phosphorous (P) and as a unique storage of inorganic carbon. The association of P with particulate Mn occurred upon the initial massive precipitation of MnO_v during pulsed oxygenation events during deglaciation. The fixation of P in authigenic Ca-Mn-carbonate phase during subsequent conversion of Mn oxides in organic-rich sediments might have facilitated retention of P in sediments, resulting in less efficient P recycling and thus slackened recovery of marine primary production. Positive excursion of nitrogen isotopic composition of Mn-rich samples ($\delta^{15}N_{kerogen} = +5.89 \sim +9.83\%$, average = +7.96%) is likely attribute to heavier seawater NO₃ because of nonquantitative denitrification under relatively low input of organic matter. These likely have impeded rapid accumulation of O₂ in atmosphere-ocean system right after Sturtian glaciation. The Sedimentary Mn carbonate deposition in a notable scale may prevent the CO₂ produced by aerobic oxidation of organic carbon diffusing back to the surface system. Namely, it can be regard as a special microbial carbon pump, converting burial/dissolved organic carbon to recalcitrant/inactive inorganic carbon. This process would provide an additional contribution for increased pO_2/pCO_2 , paving the way for rapid rise of eukaryote algae, as evidenced by increasing steroid diversity (Brocks et al., 2017), in later stage of interglacial period.

References

Brocks, J.J. et al., 2017. The rise of algae in Cryogenian oceans and the emergence of animals. Nature, 548(7669): 578-581.

Yu, W. et al., 2019. Microbial metallogenesis of Cryogenian manganese ore deposits in South China. Precambrian Research, 322: 122-135.