Carbon Isotope Composition of Basalts from Kama'ehuakanaloa (Loihi Seamount) : Primordial vs. Recycled Carbon in the Hawaiian Mantle Plume

DAVID W GRAHAM¹, PETER J MICHAEL², THI B TRUONG¹ AND MICHAEL O. GARCIA³

¹Oregon State University ²The University of Tulsa

³University of Hawai'i at Mānoa

Presenting Author: david.graham@oregonstate.edu

We analyzed the C isotope composition of vesicle CO₂, plus He isotopes and He and CO₂ concentrations in the vesicle and glass phase of 37 submarine basalts from the summit, north and south rifts, and east flank of Loihi Seamount. Tholeiites and transitional basalts lie in a narrow range of vesicle $\delta^{13}C = -0.9$ to -4.6‰, while alkali basalts range from -2.1 to -7.2‰ (Fig. 1). Calculated total (vesicle+glass) δ^{13} C in tholeiites and transitional basalts range from -2.5 to -6.0‰ for $\Delta = \delta_{vapor}$ - $\delta_{melt} = +2$ to +4‰. Although the vapor-melt isotope fractionation factor (Δ) for Loihi basalts is uncertain, there is a broad trend of vesicle δ^{13} C with the proportion of total CO₂ trapped in vesicles. This trend suggests that Δ may be $\leq +2$ ‰ for Loihi magma, and implies total $\delta^{13}C = -3$ to -5% for most lavas. This range resembles mantle source values deduced from gas-rich MORBs and Iceland basalts, and for Kilauea deduced from its fumarole gas. However, this similarity is a conundrum because all Loihi basalts extensively degassed their initial CO2. CO2/Ba systematics and crystal fractionation modeling reveal that Loihi primary magmas (MgO=18 wt.%) lost >97% of their initial CO₂ (0.6 to 1.8 wt.%). Total δ^{13} C vs. total CO₂ in most Loihi tholeiitic and transitional basalts approximates a closed-system degassing trajectory. Extrapolating this trend to initial (predegassing) CO₂ concentrations implies $\delta^{13}C = -0.5$ to -3.0% in Loihi primary magmas having the highest ³He/⁴He ratios (>30 R_A). This primary magma estimate is based on $\Delta = +2$ during closed-system degassing; larger values of Δ , as measured experimentally, and/or open-system degassing, lead to even higher estimates of δ^{13} C for primary magmas. The Hawaiian plume source therefore seems to be characterized by $\delta^{13}C$ that is markedly higher than the values of -4 to -6% commonly found throughout Earth's mantle. This higher value of δ^{13} C could imply some tectonic recycling of inorganic C (limestone) to the Loihi mantle source. However, a mantle source δ^{13} C of -0.5 to -3.0% is also within the possible range of Earth's primordial carbon given the large range of δ^{13} C in chondritic meteorites.

