Hydrogen-bonding networks in nanoconfined water

ANASTASIA G. ILGEN¹, JEFFERY A GREATHOUSE¹, WARD H. THOMPSON² AND HASINI SHAKYA SENANAYAKE²

¹Sandia National Laboratories ²University of Kansas

Presenting Author: agilgen@sandia.gov

Hydrogen-bonding (H-bonding) networks in liquid water define it's physico-chemical properties, phase boundaries, and structure-reactivity trends for solvated species. In the liquid phase, H_2O dipoles arrange into H-bonding networks, where one H_2O can interact with up to four other H_2Os . For water-filled rigid nanopores with diameters of <10 nm, the electrical double-layers extending from the opposing surfaces can overlap, leading to re-structuring of H-bonding networks inside the nanopores.

Here we use vibrational spectroscopy and molecular dynamics (MD) simulations to assess how nanoconfinement changes Hbonding networks in liquid water confined in silica (SiO₂) nanopores as a function of surface charge and temperature. In the Raman spectroscopy experiments, we use SBA-15 series mesoporous SiO₂ with pore diameters of 7 nm and 4 nm. The mesoporous SiO₂ is saturated with isotopically-dilute H₂O/D₂O aqueous solutions at controlled pH (from 2 to 8). We collect Raman spectra in 1000-4000 cm⁻¹ range to assess OH and OD stretching modes, and the H-O-H and H-O-D bending modes in nanoconfined solutions. The temperature is gradually increased from room temperature to 90 °C (363 K). Our preliminary results indicate that (1) the mesoporous structures and pore sizes of SiO₂ are unchanged during heating in the aqueous solutions; and (2) with increasing temperature the fraction of 4-coordinated H₂Os decays faster for nanoconfined water, compared to the bulk phase. This could reflect the change in the liquid-vapor phase boundary in SiO₂ nanopores, with the H₂O boiling point shifting to lower temperature. The earlier studies of H₂O confined in carbon nanotubes and graphene slit pores predicted both decrease and increase in H₂O boiling temperature with nanoconfinement. Preliminary MD simulation results for pure water near neutral surfaces show a significant shift in the water O-H stretching mode only for the first layer of water molecules directly Hbonded to the surface. Resutls will also be presented using our newly parameterized model for negatively charged silica surfaces.

Acknowledgement: SNL is managed and operated by NTESS under DOE NNSA contract DE-NA0003525.