Inter-laboratory redetermination of the atmospheric 22Ne/20Ne

DOMOKOS GYORE¹, DR. HIROCHIKA SUMINO², INSEOK YANG³, LASZLO PALCSU⁴, ELEMER LASZLO⁴, SUJOY MUKHOPADHYAY⁵ AND FIN STUART¹

¹Scottish Universities Environmental Research Centre (SUERC) ²University of Tokyo

³Korea Research Institute of Standards and Science (KRISS)

⁴Institute of Nuclear Research (ATOMKI)

⁵University of California, Davis

Presenting Author: domokos.gyore@glasgow.ac.uk

Air-derived noble gases are routinely used to calibrate mass spectrometers for both mass discrimination and sensitivity. Further the isotope composition of atmospheric noble gases is a key constraint on the origin and evolution of Earth's volatiles. Consequently, accurate and precise knowledge of the isotope composition of air-derived noble gases is essential. Neon isotopes are exceptional tracer of Earth history [1] and are highly prized chronometer of Earth surface processes [2]. The widely accepted value of atmospheric ²²Ne/²⁰Ne (0.1020 ± 0.0008, 1 σ) was established over half a century ago [3]. Recent advances in mass spectrometric techniques have demonstrated repeatability of isotope ratios (±0.1% or better e.g. [4]) that promises significant improvement in determination of standard values.

We present ²²Ne/²⁰Ne measurements of local air (n=120) from four different laboratories in three continents (SUERC, ATOMKI, University of Tokyo, UC Davis) with instruments where the mass discrimination was determined precisely by an artificially prepared mixture of isotopically pure ²²Ne and ²⁰Ne. The ²²Ne/²⁰Ne of the reference material (0.11891 ± 0.00006) was determined gravimetrically [4]. The weighted mean air ²²Ne/²⁰Ne from the four laboratories are statistically indistinguishable, yielding a global value of 0.10195 ± 0.00004 (0.04% 1 σ) (Figure 1). This new value is consistent with the long-established air ²²Ne/²⁰Ne [2] yet nearly 20 times more precise (Figure 1).

References

[1] Ballentine, C.J. and O'Nions, R.K. (1991), EPSL 113.

[2] Ma, Y. and Stuart, F.M. (2018), Acta Geochim. 37.

- [3] Eberhardt et al., Z. Naturforsch., (1965), 20a
- [4] Gyore et al., (2019), GCA 263.
- [5] Lee et al., (2006), GCA, 70(17).

