Opportunities and Challenges in Paleo-CO₂ Reconstruction and Implications for Advancing our Understanding the Paleo-Earth System. Endowed Biogeochemistry Lecture

ISABEL P MONTAÑEZ¹, GABRIEL BOWEN², DAN BREECKER³, BARBEL HONISCH⁴, SOPHIA I MACAREWICH¹, MARGRET STEINTHORSDOTTIR⁵ AND DANA ROYER⁶

¹University of California, Davis

²University of Utah

³The University of Texas at Austin

⁴Lamont-Doherty Earth Observatory

⁵Stockholm University

⁶Wesleyan University

Presenting Author: ipmontanez@ucdavis.edu

Paleo-CO₂ reconstructions are integral to understanding the evolution of Earth system processes and their interactions given that atmospheric-CO₂ concentrations are intrinsically linked to planetary function. In this talk, we use several case studies, spanning the 3 Phanerozoic Eras, to illustrate the potential of paleo-CO₂ records to constrain the magnitude and statedependency of equilibrium climate sensitivity, to advance our understanding of global biogeochemical cycles, to test the sensitivity of Earth System modeled atmospheric and oceanic circulation to PCO₂ over a range of climate states, and to interrogate ecosystem—CO₂—climate linkages and physiological responses to CO₂. Further advances in these areas, however, are dependent on how well we 'know' paleo-CO2 estimates.

 CO_2 estimates exist for much of the past half-billion years, but the degree to which the accuracy and precision of these estimates are constrained is quite variable, leading to substantial uncertainty and inconsistency in paleo- CO_2 estimates. Potential sources of this uncertainty and inconsistency include an incomplete understanding of how environmental and ecophysiological conditions and processes imprint the CO_2 proxy signals we measure, of the sensitivity of the CO_2 estimates to this uncertainty, and differences in approaches to assigning uncertainties to CO_2 estimates, among other factors. Application of newly established screening criteria, defined as part of an effort to improve our understanding of how atmospheric CO_2 has varied through the Cenozoic, illustrates how the majority of pre-Cenozoic estimates are unreliable in their current form.

To address these issues and to advance $paleo-CO_2$ reconstruction, we introduce CO_2PIP , a new community-scale project that takes a two-step approach to building the next generation Phanerozoic- CO_2 record. Collective efforts are modernizing existing terrestrial-based CO_2 estimates through additional analyses, measurements and proxy system modeling to

constrain critical parameters used to estimate paleo- CO_2 . A set of forward proxy system models being developed in collaboration with the CO_2 community, will provide a quantified representation of proxy sensitivities to environmental and ecophysiological conditions and processes that govern the CO_2 signals. Ultimately, statistical inversion analysis of the simulated and modernized proxy datasets will be used to revise individual CO_2 records and to build a new integrated model-dataconstrained CO_2 record for the Phanerozoic.