Isotopic ²³⁸U-²³⁴U-²³²Th-²³⁰Th analysis using LA-ICPMS for direct U/Th dating of millennium stalagmites

CHUNG-CHE WU¹, CHUAN-CHOU SHEN², DETLEF GÜNTHER¹ AND HATTENDORF BODO¹

¹ETH Zurich ²National Taiwan University Presenting Author: chwu@ethz.ch

Here we present high sensitivity, in situ Th and U isotope ratio determinations in carbonates using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). Online addition of a well characterized ²²⁹Th-²³³U-²³⁶U isotopic spike to the laser generated aerosol by means of a desolvating nebulizer enabled to monitor and correct for mass discrimination and elemental fractionation effects of U and Th. The efficacy of inter-element, mass discrimination, and peak tailing baseline corrections were critically evaluated and optimized. Using a "jet" interface ICPMS setup improved the detection efficiency to a yield of 1-2%. Thereby sufficiently high signal intensities have been achieved even for the low abundant isotope ²³⁰Th in stalagmites as young as 5,000-year-old with uncertainties $(2\sigma_M)$ better than ±200 years. A flowstone sample in secular equilibrium, collected from Northern Calcareous Alps, was analyzed to verify the approach and activity ratios of 1.011 \pm 0.066 ($2\sigma_M$) for 230 Th/ 238 U were obtained. This approach allows for the reconstruction of accurate age profiles for younger carbonates in particular, and could be applied for the better understanding of past millennium climate variabilities.