

Spatio-Temporal Variations in Organic Carbon Composition Driven by Different Major Phytoplankton Communities in the Ross Sea, Antarctica

JAEHONG KIM AND SANG HEON LEE Pusan National University

Presenting Author: king9527@pusan.ac.kr

To investigate the variation in organic carbon composition characterized by different algal assemblages, different forms of organic matter were measured in the northwestern Ross Sea during February-March 2018 and January 2019. The average concentrations of Chl-a (Chl-a), particulate organic carbon (POC), dissolved organic carbon (DOC), and transparent exopolymer particle (TEP) were 0.74 ± 0.44 , 142.49 ± 28.78 , $532.49 \pm 128.14 \ \mu g \ L^{-1}$, and $96.26 \pm 35.63 \ \mu g \ Xeq. \ L^{-1}$, in 2018, and 0.23 \pm 0.13, 147.99 \pm 24.24, 980.45 \pm 341.7 µg L⁻¹, and $53.77 \pm 33.75 \ \mu g$ Xeq. L⁻¹ in 2019, respectively. These concentrations varied with the P. antarctica contributions and phytoplankton bloom phases observed in 2018 (31.2 %, relatively healthy state) and 2019 (42.7 %, senescent status). Strong positive relationships between P. antarctica contributions vs POC/Chl-a, TEP/Chl-a, and DOC/Chl-a ($r^2 = 0.73$, 0.76, and 0.68, p < 0.01) were observed in 2018. Consistently, significantly higher DOC contributions to the total organic carbon (*t*-test, p <0.05) were observed at P. antarctica-abundant stations (80.6 \pm 2.6 %) than at diatoms-abundant stations $(77.7 \pm 4.6 \%)$ in 2018. However, these relationships were not detected in 2019 due to a strong meltwater input. Significantly higher TEP-C contributions to the POC (*t*-test, p < 0.01) were observed with deepened mixed layer in 2018 (36.2 \pm 14.8 %) than in 2019 (19.6 \pm 11.7 %). In conclusion, the organic carbon composition varied with the relative contribution of two major phytoplankton communities and physical environments during the study period in the northwestern Ross Sea.

