Searching for mineralogical evidence for the clay-sulfate transition region in Gale crater, Mars using the Sample Analysis at Mars-Evolved Gas Analyzer (SAM-EGA) onboard the *Curiosity* rover

JOANNA CLARK¹, BRAD SUTTER², GREG WONG³, JAMES LEWIS⁴, AMY MCADAM⁵, DOUG ARCHER², PAUL MAHAFFY⁶, HEATHER FRANZ⁵, JENNIFER EIGENBRODE⁵, CAROLINE FREISSINET⁷, JENNIFER STERN⁵, DANIEL P. GLAVIN⁶, ANDREW STEELE⁸, CHRISTINE KNUDSON⁹, CHRISTOPHER HOUSE³, CHARLES MALESPIN⁵ AND DOUGLAS W MING¹⁰

¹GeoControls Systems- Jacobs JETS Contract NASA Johnson Space Center
²Jacobs
³Penn State University
⁴Howard University, NASA Goddard Space Center
⁵NASA Goddard Space Center
⁶NASA Goddard Space Flight Center
⁷LATMOS-IPSL/CNRS
⁸Carnegie Institution for Science
⁹University of Maryland, NASA Goddard Space Center
¹⁰NASA Johnson Space Center
¹⁰NASA Johnson Space Center
¹⁰NASA Johnson Space Center

The Curiosity rover exited the phyllosilicate-bearing "Glen Torridon" (GT) region in Gale crater, Mars and is now driving towards a stratigraphically higher sulfate-bearing region that represents a major climatic change in Mars' history. Curiosity analyzed five sedimentary rock samples in the upper GT and clay-sulfate transition region as of March 2022 with its instrument suite, listed from the stratigraphically lowest to highest sample - Nontron (NT), Bardou (BD), Pontours (PT), Maria Gordon (MG), and Zechstein (ZE). The goal was to constrain their volatile chemistry, support mineralogical interpretations, and ultimately determine if the rover was entering the sulfate-bearing unit as indicated by orbital data. NT and BD evolved mid-temperature H2O peaks consistent with dioctahedral smectites, similar to lower GT samples; however these peaks were minimal or absent in the stratigraphically higher samples (PT, MG, and ZE). The disappearance of the mid-temperature H₂O peak in the transition samples was consistent with a decrease in phyllosilicates, which was also observed in X-ray diffraction data from the Chemistry and Mineralogy (CheMin) instrument. All five samples evolved broad SO₂ releases consistent with Fe sulfates, which were also detected in lower GT samples. NT2 and the stratigraphically higher samples (PT, MG, ZE) evolved high-temperature SO₂ peaks consistent with Mg sulfate. This peak was especially prominent in the uppermost sample, ZE. The CO₂ and CO evolutions detected by SAM were highly variable and suggestive

of varying contributions from adsorbed CO_2 , carbonates, oxidized organic C, and instrument background. Evolved NO was very low/absent and varied between samples. The lack of O_2 detections in all samples suggested that (per)chlorates were either absent or only present at very low abundances. HCl releases were similar to previous samples and suggested the presence of chlorides. Overall, SAM-EGA results from the claysulfate transition region in Gale crater showed a notable decrease in evolved water from phyllosilicates and a slight increase in high-temperature SO₂ from Mg sulfate in the up-section samples. These results suggest that *Curiosity* is transitioning out of the clay-bearing Glen Torridon trough and towards the sulfatebearing unit.