Stable Potassium Isotopes (⁴¹K/³⁹K) Track Transcellular and Paracellular Potassium Transport in Biological Systems

JOHN A HIGGINS¹, DANIELLE SANIAGO RAMOS², STEFANIA GILI¹, CORNELIA SPETEA³, SCOTT KANOSKI⁴, DARREN HA⁵, ALICIA A MCDONOUGH⁵ AND JANG H. YOUN⁵

¹Princeton University
²Rutgers University
³University of Gothenburg
⁴University of Southern California
⁵University of Southern California Keck School of Medicine
Presenting Author: jahiggin@princeton.edu

Here we present measurements of the stable isotope ratios of potassium $({}^{41}K/{}^{39}K)$ in three biological systems. We show that the ratio of ⁴¹K to ³⁹K varies systematically: between the singlecelled green alga Chlamydomonas reinhardtii and growth medium; between muscles of both euryhaline and stenohaline marine teleosts and seawater; and between blood plasma and red blood cells, muscles, cerebrospinal fluid, brain tissues, and urine in the terrestrial mammal Rattus norvegicus. Considered in the context of our current understanding of K⁺ transport in these biological systems, our results provide evidence that the fractionation of K isotopes depends on transport pathway and transmembrane transport machinery: K⁺ channels and paracellular transport through tight-junctions favor ³⁹K whereas K⁺ pumps and co-transporters exhibit less isotopic fractionation. These results indicate that stable K isotopes can provide unique quantitative insights into the machinery and dynamics of K⁺ homeostasis in biological systems.