StabisoDB, a stable isotope database for Earth system research, and its application to reconstructing Paleozoic ocean temperatures and Earth-system sensitivity

ETHAN L. GROSSMAN¹, MICHAEL M. JOACHIMSKI² AND CRISTINA KRAUSE²

¹Texas A&M University ²Friedrich-Alexander University of Erlangen-Nuremberg Presenting Author: e-grossman@tamu.edu

Quantitative study of the Earth system in deep time necessitates easy access to compilations of proxy data placed within a temporal and spatial framework. To this end we have developed StabisoDB [1], a stable isotope database focusing on O, C, Sr, S, and clumped isotope data in fossils. StabisoDB's system modular MySQL/PHP allows straightforward accommodation of other data and expansion to whole rock samples. StabisoDB currently comprises δ^{18} O and/or δ^{13} C data for 26,974 Phanerozoic fossil samples including foraminifera, mollusks, brachiopods, fish teeth, and conodonts, building upon the compilation in Grossman and Joachimski [2]. StabisoDB houses а large array of metadata including coordinates/paleocoordinates, stratigraphy, taxonomy, preservation, and analytical metadata. These metadata allow easy searches with filtering of data; tools permit visualization of isotopic trends and sample localities on paleogeographic maps.

Using StabisoDB, we have compiled δ^{18} O data for Paleozoic carbonate (N = 4,976) and phosphate (N = 3,430) fossils from shallow marine environments [3]. These data facilitate quantitative study of links between the carbon cycle and deeptime climate. In calculating paleotemperatures, we assert a constant hydrosphere δ^{18} O and correct seawater δ^{18} O for ice volume and paleolatitude. Low-latitude $(0 - 30^{\circ})$ sea-surface temperatures decrease from extreme values (>40°C) in the Early to Middle Ordovician (490-465 Ma) to low values (20-30°C) in the Carboniferous and Permian (359-252 Ma), followed by rapid warming to hothouse temperatures (≥35°C) at the end-Permian event (~252 Ma). Estimates of solar forcing due to pCO_2 doubling based on pCO₂ proxies and models, corrected for changing solar radiation, yield Paleozoic Earth-system sensitivities for low latitudes of 2.5-2.8 K W⁻¹âTMm² (~10 °C per pCO_2 doubling). These values, though based on only half of Earth's surface, are extremely high compared with the best estimate of equilibrium climate sensitivity reported in the IPCC 6^{th} Assessment Report (2.5-4 °C per pCO₂ doubling [4]), suggesting differences in the coupling of climate and the carbon cycle in Earth's deep past.

[1] http://stabisodb.org

[2] Grossman & Joachimski (2020), *in* Gradstein et al., eds., The Geologic Time Scale 2020, 279-307.

[3] Grossman & Joachimski (2022), Scientific Reports (in

[4] IPCC (2021), Summary for Policymakers, Climate Change 2021.

press).