Controls on Sr partitioning in aragonite under simulated biogenic conditions

MARIA CRISTINA CASTILLO ALVAREZ¹, KIRSTY PENKMAN², ROLAND KROGER², ADRIAN A FINCH¹, MATTHIEU D CLOG³, ED HATHORNE⁴ AND NICOLA ALLISON¹

Presenting Author: mcca1@st-andrews.ac.uk

Coral aragonite Sr/Ca is a common palaeothermometer, used to reconstruct past surface seawater temperatures in the tropics and sub-tropics. Coral aragonite Sr/Ca may be influenced by temperature, seawater pCO₂ and by skeletal extension rate/calcification rate. Resolving how different factors influence strontium partitioning is essential to the effective development of this palaeoproxy.

Here we precipitated aragonite from seawater *in vitro* under tightly controlled conditions that simulate the compositions of the calcification fluids used to build coral skeletons and identify potential controls on aragonite Sr/Ca. During the precipitations we varied pH (8.337, 8.545 and 8.727), seawater pCO₂ and dissolved inorganic carbon (DIC, 850-7800 µmol kg-1) to generate a range of aragonite saturation states ($\Omega=4,\,7,\,10,\,13$ or 18). We tested multiple pH/DIC conditions within each Ω condition. All experiments were conducted at T = 25±0.1°C, salinity = 34 and aragonite was precipitated *in vitro* onto a seed produced from a ground up coral skeleton. The same mass of aragonite was precipitated *in vitro* in each experiment. We observed a broad range of aragonite precipitation rates (from 130 to 3400 µm m⁻² h⁻¹) which were positively related to Ω .

Sr/Ca K_D of the precipitated aragonites were inversely correlated with aragonite precipitation rates (and Ω) but were unaffected by seawater pH. Aragonite Sr/Ca was inversely related to Mg/Ca. Aragonite Sr/Ca varied by >7% over the tested Ω range. The temperature dependence of coral aragonite is up to ~1% °C. Variations in the aragonite precipitation rate between coral skeletons could generate significant errors in estimates of past seawater temperatures.

¹University of St. Andrews

²University of York

³Scottish Universities Environmental Research Centre

⁴GEOMAR Helmholtz Centre for Ocean Research Kiel