Accounting for Multi-Phase Carbon in Melt Inclusion Bubbles

CHARLOTTE DEVITRE¹, **KYLE DAYTON**¹, ESTEBAN GAZEL¹, ANNA BARTH², TERRY A PLANK³, AYLA PAMUKCU⁴, GLENN GAETANI⁵ AND BRIAN MONTELEONE⁵

¹Cornell University

Presenting Author: kad283@cornell.edu

Constraining the carbon flux from volcanism is critical to understanding Earth's volatile budgets and the drivers of explosive eruptions. Our best estimates of pre-degassing CO2 contents can be obtained from olivine-hosted melt inclusions (MI). Up to ~90% of the CO₂ contained in MI can be found in a vapor or "shrinkage" bubble, and thus, the total CO₂ concentration of a MI requires measurement of exsolved CO2 in the bubble as well dissolved CO2 in the glass. An additional challenge is that some MI include CO₂ sequestered as carbonates on the bubble walls or CO2 found as co-existing liquid (L) and gas (G) at ambient temperature (T_{amb} =18-25 °C). Raman spectroscopy is a powerful tool to study MI, as it is possible to measure their density using a calibration of the P-V-T-X properties of CO2 related to spectral features (e.g., Fermi diad separation). But for this technique to properly work, CO₂ must be a single phase (L, G, or supercritical). To solve the carbonate problem, we produced fast re-heating experiments on olivinehosted MI from the Fall Stratified deposit of Etna to resorb carbonate crystals back to CO₂. We measured the bubble CO₂ and glass H₂O before and after heating with our calibrated Raman microscope. These short-duration heating experiments were sufficient to successfully resorb the carbonates as CO₂ and allow accurate density measurements (with change of up to ~0.2 g/mL) without losing H₂O. A set of these MI have also been fully re-homogenized by internally heated pressure vessel resulting in comparable CO₂ contents, validating the Raman results. The second challenge is related to many MI bubbles containing both L+G CO₂ at T_{amb} (densities of ~0.2-0.7g/mL which should not be measurable by Raman spectroscopy, but often reported). Therefore, we conducted a series of experiments at T_{amb} and 37°C (above the critical temperature T_{crit} of CO_2) with different instrument parameters (e.g., laser power) on natural L+G bearing bubbles in MI from Ross Island. Based on these results, we recommend laboratories to measure MI bubbles while heating above T_{crit} to homogenize coexisting phases, and to use low power to minimize the effect of further laser heating.

²University of California Berkeley

³Lamont-Doherty Earth Observatory

⁴Stanford University

⁵Woods Hole Oceanographic Institution