CENOZOIC EVOLUTION AND EXTINCTION OF MEGATOOTH SHARKS FROM STABLE ISOTOPE RATIOS IN BIOAPATITE

MICHAEL L GRIFFITHS¹, RANDY FLORES², EMMA R KAST³, SORA L. KIM⁴, JEREMY MCCORMACK⁵, ALLIYA A AKHTAR^{1,6}, KENSHU SHIMADA⁷, MARTIN BECKER¹, HARRY MAISCH IV¹, ZIXUAN C. RAO⁶, JOHN A HIGGINS⁶, ALLISON NEUMANN⁸, CHELESIA CLARKE¹, ARADHNA EAGLE TRIPATI⁹, RACHEL CHAN⁴, MOLLY KARNES⁴, DANIEL M. SIGMAN⁶ AND ROBERT A EAGLE^{9,10,11,12}

¹William Paterson University
²University of California Los Angeles
³University of Cambridge
⁴University of California Merced
⁵Max Planck Institute for Evolutionary Anthropology
⁶Princeton University
⁷DePaul University
⁸Rensselaer Polytechnic Institute
⁹University of California, Los Angeles
¹⁰UCLA
¹¹University of California - Los Angeles
¹²Université de Brest Occidentale
Presenting Author: griffithsm@wpunj.edu

The evolution and extinction of megatooth sharks, most notably Otodus megalodon (Lamniformes: Otodontidae), remain enigmatic. It has been proposed that the ability of megatooth sharks to thermoregulate acted as a key driver for the evolution of gigantism that impacted their ecological role and success in surviving environmental changes. Yet, despite advances in paleohistology, it is still unclear if, for example, O. megalodon was ectothermic or endothermic, and whether its thermophysiology could help to explain the iconic shark's demise during the Pliocene. Here we present novel geochemical constraints on the influence of ocean temperatures on modern shark tooth bioapatite 'clumped' isotope (δ_{47}) signatures, as well as evidence for thermoregulation in O. megalodon from both δ_{47} paleothermometry and phosphate oxygen isotope ratios. Our results show that O. megalodon maintained an overall warmer body temperature compared with ambient environment, providing new quantitative and experimental support of recent biophysical modeling studies that suggest endothermy was one of the key drivers for gigantism.

Trophic position is also fundamental characteristic of animals, yet is unknown in many extinct species. Here we reconstruct also the trophic level of extinct megatooth sharks through the Cenozoic by measuring various biogeochemical tracers of food web dynamics, including the ¹⁵N/¹⁴N of enamel-bound organic matter (δ^{15} NEB), and zinc (δ^{66} Zn) and calcium (δ^{44} Ca) isotope ratios. Very high (low) δ^{15} NEB (δ^{66} Zn, δ^{44} Ca) values in *O*.

megalodon and chronospecies *O. chubutensis* indicate that they occupied a higher trophic level than is known for any marine species, extinct or extant. Collectively, these results help to contextualize current working hypotheses for the evolution and extinction of *O. megalodon*.