CO₂ emission and geothermal features of the French Massif Central.

LISA RICCI¹, FRANCESCO FRONDINI¹, DANIELE MORGAVI¹, GUILLAUME BOUDOIRE², MICKAEL LAUMONIER², CARLO CARDELLINI¹, ALESSANDRA ARIANO¹, STEFANO CALIRO³ AND GIOVANNI CHIODINI⁴

Napoli - Osservatorio Vesuviano

⁴INGV, Sezione di Bologna

Presenting Author: lisa.ricci58@gmail.com

The French Massif Central, a volcanic area located in centralsouthern France belonging to the European Cenozoic Rift System (ECRIS), hosts deep-CO₂-rich hydrothermal systems. Their surficial manifestations include a huge number of low rate CO₂-rich springs, bubbling pools and mofettes. Since the seventies, the region was widely investigated for geothermal purposes, becoming the scene of the development of increasingly responsive geothermometers [1]. Here, using new chemical and isotopic data of Massif Central springs coupled with data from previous works, we analyse the geochemical characteristics of the Massif Central fluids, their origin and their thermal content. The circulating waters i) exhibit a chemical composition which reflects the chemistry of the rocks when they circulate; ii) are characterized by a partial equilibrium with respect to silicates [2] iii) are oversaturated with respect to calcite and vi) show pCO₂ values up to 2 bar. Temperatures of the hydrothermal reservoirs, estimated trough Na/K, Na/Li, Mg-Na-K and silica geothermometers, range from 120 °C to 200 °C, in agreement with previous studies. The CO₂/enthalpy ratio ranges from 0.001 and 0.006 kg MJ⁻¹, of the same order of magnitude of the global baseline value [3].

- [1] Fouillac, C. (1983), Chemical geothermometry in CO_2 -rich thermal waters. Example of the French Massif Central. *Geothermics* 12, 149-160.
- [2] Giggenbach, F. (1988), Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. *Geochim. Cosmochim. Acta* 52, 2749-2765.
- [3] Kerrick, D.M., McKibben, M.A., Seward, T.M. & Caldeira, K. (1995), Convective hydrothermal CO₂ emission from high heat flow regions. *Chem. Geol.* 121, 285–293.

¹Università degli studi di Perugia

²Université Clermont Auvergne

³Istituto Nazionale di Geofisica e Vulcanologia, Sezione di