Melting behavior of potassium carbonate at deep Earth conditions

JIE LI 1 , DONGYUAN ZHOU 1 , BIN CHEN 2 AND AARON S WOLF 3

¹University of Michigan

³Univ. of Michigan, Earth & Env. Sciences

Presenting Author: jackieli@umich.edu

Carbonates are common rock-forming minerals and represent a dominant carbon reservoir of the Earth System, yet their melting behavior at mantle conditions remains poorly understood. Practical challenges for carbonate melting experiments include decomposition prior to melting at pressures below ~3 GPa and extreme sensitivities to pressure, temperature, and water content. Here we report new constraints on the melting curve of potassium carbonate K₂CO₃ at pressures up to 20 GPa, from in situ ionic conduction measurements using a largevolume press and from synchrotron X-ray diffraction measurements using laser-heated diamond anvil cells. We found that the melting temperature of K₂CO₃ increases steeply with pressure to exceed those of magnesite MgCO3 and aragonite CaCO₃ at the mantle transition zone conditions. We will discuss the diverse thermodynamic melting properties of alkali metal and alkaline earth carbonates at high pressures and explore the implications for the long-term component of carbon cycle.

²University of Hawai'i at Manoa