Possible emergences of cyanobacteria and sulfate-reducing bacteria before the emergence of anoxygenic photoautotrophs

HIROSHI OHMOTO

Penn State University

Presenting Author: hqo@psu.edu

The conventional view by earth scientists and biologists on the evolution of life on early Earth is that anoxygenic photoautotrophs that utilize H_2S (and/or native sulfur) as an electron donor in biosysthesis (Reaction 1), preceded oxygenic photoautotrophs that utilize H_2O as an electron donor (Reaction 2):

 $4CO_2 + 5H_2S = 4CH_2O + 4S^0 + SO_4^{2-}(1)$

 $CO_2 + H_2O = CH_2O + O_2(2)$

This view was developed mostly because of the belief that molecular O_2 was virtually absent in the atmosphere and oceans prior to ~2.5 Ga ago, except for the minor amounts of O_2 that were produced by abiotic photodissociation of H_2O .

Thermodynamic analyses of the stability relationships among aqueous/gaseous/solid species in the H-C-O-S-Fe system suggest that Reaction (1) may become important only in environments where native sulfur and $SO_4^{2^-}$, as well as $H_2S_{(aq)}$, become stable at $m\sigma SO_4^{2^-} \ge mH_2S_{(aq)}$. Fe-bearing minerals that are in equilibrium with native sulfur are marcasite/pyrite (FeS₂), rather than pyrrhotite (FeS) or iron (hydr)oxides (e.g., Fe(OH)₂, FeOOH, Fe(OH)₃, Fe₃O₄, Fe₂O₃). Such conditions are typically created in local basins where $H_2S_{(aq)}$ is produced by sulfate-reducing bacteria utilizing $SO_4^{2^-}$ in seawater; $SO_4^{2^-}$ -rich seawater is generated from the oxidation of pyrite in igneous and sedimentary rocks during soil formation on land. Therefore, the emergence of H_2S -utilizing anoxygenic photoautotrophs likely occurred after the emergences of cyanobacteria and sulfate-reducing bacteria.