Measuring CO₂ Exchange over the Hydromagnesite-Magnesite Playas in Atlin, B.C.

ANNE_MARTINE DOUCET¹, FRANCES ANN JONES¹, BETHANY LADD¹, ANDREW BLACK¹, GREGORY DIPPLE² AND K. ULRICH MAYER¹

¹University of British Columbia

²Carbmin Lab-University of British Columbia

Presenting Author: amdoucet@eoas.ubc.ca

The hydromagnesite-magnesite playas in Atlin, BC, are an important site for demonstrating carbonate mineral stability at the Earth's surface [1]. The playas represent a natural analogue for carbon capture and storage via ex-situ carbon mineralization. Additionally, Power et al. (2014) suggested that the playas degas CO₂ during carbonate mineral precipitation from the Mg-HCO₃ rich groundwater. The complex interactions between minerals, fluids and the atmosphere make Atlin an ideal site to test methods for measuring CO₂ fluxes in a predominantly abiotic geologic setting. Eddy covariance (EC) and dynamic closed chamber (DCC) systems, combined with meteorological sensors, were co-located to directly quantify rates and characterize processes governing the CO₂ flux across the playa-atmosphere interface. Data were collected continuously over 27 days in August 2020 and 12 days in 2021. The results from the DCC method show distinct diurnal oscillation of CO₂ fluxes, with average daytime fluxes of $+0.17\pm0.36$ µmol m⁻² s⁻¹ and nighttime fluxes of -0.24±0.32 µmol m⁻² s⁻¹ (positive upward and negative downward). The near-zero flux measured via the DCC method indicates minimal net exchange of carbon across the playaatmosphere interface. These observations imply that DCCmeasured CO₂ fluxes are governed predominantly by changes in CO₂ solubility in alkaline porewater related to diurnal temperature fluctuations and variations in CO₂ concentrations in ambient air above the ground surface. However, the EC data show a continuous positive flux averaging $+1.39 \ \mu mol \ m^{-2} \ s^{-1}$ (2020) and +1.11 μ mol m⁻² s⁻¹ (2021). The net flux of CO₂ measured by EC is from a source undetected by the DCC (i.e. CO₂ imported laterally from surrounding forests or released through preferential pathways in the playa). The use of two flux measurement methods reveals the importance of the scale and location at which CO₂ flux processes occur at this site and the necessity of cross-validation between methods. These findings provide insights for the larger-scale application of these methods for monitoring and verification of *ex-situ* carbon mineralization at enhanced weathering sites.

[1] Power, I. M. *et al.* A depositional model for hydromagnesite-magnesite playas near Atlin, British Columbia, Canada. *Sedimentology* **61**, 1701–1733 (2014).