Triple oxygen isotope systematics of early Earth's carbonate record

JAKUB SURMA¹, NINA ALBRECHT², OLIVER JÄGER³, FABIAN ZAHNOW³, CHRISTIAN MARIEN⁴, WANLI XIANG¹, JOACHIM REITNER¹ AND ANDREAS PACK¹

¹University of Göttingen

²Thermo Fisher Scientific (Bremen) GmbH

³Geoscience Center, Georg-August University Göttingen

⁴Universität zu Köln

Presenting Author: jakub.surma@uni-goettingen.de

Triple oxygen isotope systematics of early Earth's carbonate record

Surma^{1,2}*, N. Albrecht ^{3,1}, O. Jäger ¹, F. Zahnow ¹, C. Marien ⁴, W. Xiang¹, J. Reitner¹, and A. Pack¹

¹Georg-August University Göttingen, 37077 Göttingen, Germany (*correspondence to: surma@gwdg.de)

² presently at: Tokyo Institute of Technology, 145-0061 Tokyo, Japan

³presently at: Thermo Fisher Scientific (Bremen) GmbH, 28199 Bremen, Germany

⁴University of Cologne, 50674 Cologne, Germany

Chemical carbonate sediments throughout the Archaean show systematically lower oxygen isotope compositions by 10 to 15 ‰ in δ^{18} O, compared to the Phanerozoic record [1]. There is still an ongoing debate about the actual mechanism behind the secular shift with three processes being suggested: i) reduced water-carbonate fractionation due to high ocean temperature, ii) an Archaean ocean that was considerably depleted in 18 O, and iii) diagenetic overprint and re-equilibration of pristine isotope signatures [2 and references therein].

In order to obtain further constraints on formation temperatures and diagenetic effects, we performed high-precision analyses of the second-order $\delta^{117}O$ (= ln($\delta^{17}O+1$) – 0.528 Å·ln($\delta^{18}O+1$)) parameter. CO₂ was liberated from carbonate by orthophosphric acid digestion and measured for its triple oxygen isotope composition by recently developed fragment ion (${}^{17}O^{+}/{}^{16}O^{+}$, ${}^{18}O^{+}/{}^{16}O^{+}$) analysis with a dual-inlet gas source HR-IRMS [3], as well as by a newly modified O₂-CO₂ equilibration technique [4].

Our results show that Archaean carbonates fall below the expected carbonate equilibrium between modern sea water and carbonate in the δ'^{17} O vs. δ^{18} O space, suggesting an early ocean that was significantly depleted in 18 O. This observation supports the concept of high CO₂ sequestration fluxes and enhanced silicification during the early Archaean [5].

[1] Shields and Veizer (2002), Geochem. Geophys. Geosyst., 3, 10.1029/2001GC000266 [2] Jaffrés et al. (2007), Earth-Sci. Rev., 83, 83-122 [3] Adnew et al. (2019), Rapid Commun Mass Spectrom., 33, 1363-1380 [4] Jäger et al. (2021) Goldschmidt 2021 Abstract, 10.7185/gold2021.8081 [5] Herwartz, Pack & Nagel (2021), PNAS, 118, 10.1073/pnas.2023617118