Differentiating between anthropogenic and natural nitrate sources to groundwater in arid regions using artificial sweeteners, isotopes, and major ion chemistry

BEN LINHOFF

U.S. Geological Survey, New Mexico Water Science Center Presenting Author: blinhoff@usgs.gov

Recently, the subsoils of arid-region ephemeral stream floodplains (arroyos) in the northern Chihuahuan Desert were discovered to contain large naturally occurring nitrate (NO₃) reservoirs (floodplain: ~38,000 kg NO₃-N/ha; background ~59 kg NO₃-N/ha). These reservoirs may be mobilized through land use change or natural stream channel migration. Natural NO₃ sources makes differentiating between anthropogenic and natural groundwater NO₃ challenging in arid regions. In an area with multiple anthropogenic NO₃ sources such as landfills, sewage lagoons, and sewer line releases as well as natural reservoirs of NO₃, I used a wide suite of geochemical tracers to differentiate NO₃ sources. These tracers included contaminants of emerging concern (CEC) such as pharmaceuticals, artificial sweeteners, and organic wastewater indicators, as well as nitrogen and carbon isotopes and major ion chemistry. Based on elemental ratios and isotope analyses, at sites with very high NO₃ concentrations (>25 mg/L NO₃ N) NO₃ is sourced from naturally occurring subsoil NO₃ deposits. Nitrogen isotope results indicate that denitrification is fairly limited in the field area. As such, both anthropogenic and natural NO₃ in groundwater will likely persist into the future. Neotame, a relatively recently approved (2002) artificial sweetener known to break down rapidly in the environment, was used to identify locations of very recent (<15 ybp) or ongoing wastewater fluxes to the aquifer. This study shows that CEC are often more useful indicators of recent recharge than traditional geochemical tracers, given the ubiquity of CEC in groundwater even at tritium-dead sites. Based on a synthesis of geochemical analyses, NO₃ sources were classified as being largely from anthropogenic (62%), ephemeral stream floodplain subsoil NO₃- (16%), background (12%), and unknown (10%). This work provides a template for future studies seeking to differentiate between multiple and potentially mixed natural and anthropogenic NO₃ sources to groundwater.