Enhanced weathering rates of kimberlite residues: Insights from field and laboratory studies

ZIVI R SCHAFFER, KWON RAUSIS, IAN POWER AND CARLOS PAULO

Trent University

Presenting Author: zivischaffer@trentu.ca

Enhanced rock weathering (ERW) is a negative emissions technology with the potential to remove gigatonnes of atmospheric CO₂. Accurate carbon accounting is a key challenge of ERW due to the slow reaction of CO₂ with Mg- and Casilicates, storage of carbon as either a soluble or solid phase, and spatially and temporally viabilities in soil carbon content in large open systems. The goal of our laboratory and field studies is to develop a scalable methodology for measuring CO₂ sequestration rates through ERW of kimberlite mine residues from De Beers' Gahcho Kué diamond mine (Canada). These mine wastes contained 30.2 wt.% lizardite [Mg₃Si₂O₅(OH)₄] and 9.4 wt.% forsterite (Mg₂SiO₄), nutrients including K (2.12%), and numerous trace elements, e.g., Ba, Ni, Sr, and Co (1171, 1151, 471, 69 ppm, respectively). Soil-kimberlite mixtures (0-100 wt.% residues; 250 mg total mass) were leached in plastic 250 mL flasks with 100 mL deionized water in a $\rm CO_2$ incubator (10% CO₂; 35 °C). Principal component analysis of leachate chemical data indicates that the release of Mg, Si, K, Na, Ba, Ni, and Sr were distinct to kimberlite. Field experiments (1 m² plots)involved mixing 10 and 20 kg of kimberlite residues into native soil, followed by monitoring of CO2 fluxes, CO2 pore gas concentrations, soil moisture, and porewater chemistry for 1 yr. CO₂ fluxes were only negative during the first day of the experiment, removing atmospheric CO2 at a rate of up to -5.6 kg/m²/yr. However, CO₂ fluxes quickly became positive and indistinguishable from unamended soil (0-13.5 kg CO₂/m²/yr). These high soil CO₂ fluxes raise the question of whether ERW is a negative emissions technology or CO₂ avoidance technology, though both are beneficial. Porewaters from the 20 kg residues/m² plot were distinguishable from the control soil plot, characterized by higher concentrations of major (Mg, Si, K, Na) and trace (Ba, Ni, Sr) elements, as well as greater alkalinity (8.5 \pm 1.5 and 6.6 \pm 0.9 mmol/L, respectively). In this ongoing research, monitoring multiple parameters, including distinct trace elements, will aid in developing approaches to assess ERW rates in soil environments.