Rapid source shifting of a deep magmatic system revealed by the Fagradalsfjall eruption, Iceland

SAEMUNDUR A HALLDORSSON¹, EDWARD MARSHALL¹, ALBERTO CARACCIOLO¹, SIMON MATTHEWS¹, ENIKÅ' BALI¹, MAJA RASMUSSEN¹, EEMU RANTA², JÓHANN GUNNARSSON-ROBIN¹, GUÐMUNDUR H. GUÐFINNSSON¹, OLGEIR SIGMARSSON^{1,3}, JOHN MACLENNAN⁴, MATTHEW JACKSON⁵, MARTIN J. WHITEHOUSE⁶, HEEJIN JEON⁶, QUINTEN H. A. VAN DER MEER¹, GEOFFREY MIBEI¹, MAARIT KALLIOKOSKI¹, MARIA REPCZYNSKA¹, REBEKKA RðNARSDÓTTIR¹, GYLFI SIGURDSSON¹, MELISSA PFEFFER⁷, SAMUEL SCOTT¹, RÍKEY KJARTANSDÓTTIR¹, BARBARA I KLEINE¹, OPPENHEIMER CLIVE⁸, PROF. ALESSANDRO AIUPPA⁹, EVGENIA ILYINSKAYA¹⁰, MARCELLO BITETTO¹¹, GAETANO GIUDICE¹² AND ANDRI STEFÁNSSON¹

Presenting Author: gudmhg@hi.is

Recent Icelandic rifting events have illuminated the roles of centralized crustal magma reservoirs and lateral magma transport, important characteristics of mid-ocean ridge magmatism. A consequence of such shallow crustal processing of magmas is the overprinting of signatures that trace the origin, evolution and transport of melts in the uppermost mantle and lowermost crust. We present unique insights into processes occurring in this zone from integrated petrologic and geochemical studies of the 2021 Fagradalsfjall eruption on the Reykjanes Peninsula in Iceland. Geochemical analyses of basalts erupted during the first 50 days of the eruption combined with associated gas emissions, reveal direct sourcing from a near-Moho magma storage zone. Geochemical proxies which signify different mantle compositions and melting conditions (K₂O/TiO₂, La/Yb and radiogenic isotopes) changed at a rate unparalleled for

individual basaltic eruptions globally. Initially, the erupted lava was dominated by melts sourced from the shallowest mantle but over the following three weeks become increasingly dominated by magmas generated at a greater depth. This shift in lava chemistry is greater in magnitude than the entire five-century output during the last eruptive episode on the Peninsula (circa 700 to circa 1240 AD). This exceptionally rapid trend in erupted compositions provides an unprecedented temporal record of magma mixing that filters the mantle signal, consistent with processing in near-Moho melt lenses containing $10^7 - 10^8$ m³ of basaltic magma. Exposing previously inaccessible parts of this key magma processing zone to near-real time investigations, provides new insights into the timescales and operational mode of basaltic magma systems.

¹Nordic Volcanological Center, Institute of Earth Sciences, University of Iceland

²Institute of Earth Sciences, University of Iceland

³Laboratoire Magmas et Volcans, Université Clermont Auvergne

⁴University of Cambridge

⁵Department of Earth Science, University of California Santa Barbara

⁶Swedish Museum of Natural History

⁷Icelandic Meteorological Office, Reykjavík, Iceland

⁸Department of Geography, University of Cambridge

⁹University of Palermo, Dipartimento di Scienze della Terra e

¹⁰COMET, School of Earth and Environment, University of Leeds

¹¹Dipartimento di Scienze della Terra e del Mare, Università di Palermo

¹²Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania