Diurnal variation in the δ'^{17} O of atmospheric CO₂ in the temperate scots pine forest ecosystem

GETACHEW AGMUAS ADNEW¹, GERBRAND KOREN², EWOUT MELMAN³, WOUTER PETERS⁴, MICHIEL VAN DE MOLEN⁵ AND THOMAS RÖCKMANN¹

¹Institute for Marine and Atmospheric Research Utrecht, Utrecht University

²Utrecht University

³Institute for Marine and Atmospheric research, Utrecht, Utrecht University

⁴Wageningen University

⁵Institute for Meteorology and Air Quality

Presenting Author: g.a.adnew@uu.nl

 $δ^{'17}O$ ($\delta^{'17}O$ = ln($\delta^{17}O$ +1)-0.528 × ln ($\delta^{18}O$ +1)) of atmospheric CO₂ has been proposed as a possible tracer of gross primary production (GPP). However, how $\delta^{'17}O$ of atmospheric CO₂ varies diurnally at the ecosystem scale in different seasons has not been investigated. To use $\delta^{'17}O$ of atmospheric CO₂ as a tracer for GPP requires understanding the factors that control the $\delta^{'17}O$ signal and knowing how $\delta^{'17}O$ varies both diurnally and seasonally.

In this study, we explored the diurnal variation in $\delta^{17}O$ of CO₂ along with $\delta^{13}C$ and $\delta^{18}O$ at different seasons in a temperate scots pine forest ecosystem. $\delta^{'17}O$ is measured with a precision of < 10 ppm. For all the seasons, $\delta^{13}C$ is enriched during the day when photosynthesis occurs and is depleted in the night when respiration dominates, mirroring the CO₂ mole fraction. The highest amplitude in $\delta^{13}C$ and CO₂ mole fraction is observed during the growing season.

The δ^{18} O and δ'^{17} O are mainly controlled by exchange with leaf water and soil water rather than by plant uptake. Thus, the observed enrichment or depletion in δ^{18} O and δ'^{17} O is strongly dependent on the enrichment or depletion of leaf water which is strongly dependent on vapor pressure deficit. Except in the growing season, δ^{18} O is enriched (during the day) and depleted (in the night) and δ'^{17} O is vice versa (depleted in the day and enriched in the night). However, during the growing season, δ^{18} O is higher during the night when respiration dominates and lower during the day when photosynthesis dominates. For the growing season, δ'^{17} O of CO₂ is higher during the day when photosynthesis dominates and lower during the night when respiration dominates.