Experimental investigation of phase relations in the Fe-O-H system under high pressure-temperature conditions: implications for hydrogen-oxygen deep cycles

ZIQIANG YANG¹ AND LI ZHANG²

¹Center for High Pressure Science & Technology Advanced Research

²Center for High Pressure Science and Technology Advanced Research

Presenting Author: ziqiang.yang@hpstar.ac.cn

Experimental investigation of phase relations in the Fe-O-H system under high pressure-temperature conditions: implications for hydrogen-oxygen deep cycles

Z.YANG¹, L. ZHANG¹*

¹ Center for High Pressure Science and Technology Advanced Research, 201203 Shanghai, China (*correspondence: zhangli@hpstar.ac.cn)

We investigated phase relations in the Fe-O-H system based on in-situ synchrotron x-ray diffraction measurements and observed formation of a series of mixed-valence iron oxides under high pressure-temperature (P-T) conditions of the lower mantle. Wustite (Fe_{1-x}O) or hematite (Fe₂O₃) was used as the starting materials, and synthetic SiO₂ gel (containing ~2 wt.% H₂O) or deionized water was loaded as pressure medium and water supply. In runs using hydrous SiO₂ gel to control the water content, hematite transformed into the high-pressure phase of magnetite $(Hp-Fe_3O_4)^{[1]}$ and a new hydrous hexagonal phase (Fe_{12.76}O₁₈H_r, denoted as "HH1-phase") at 45 GPa and 66 Gpa, respectively. Meanwhile, wustite transformed into a mixedvalence iron oxide $Fe_{25}O_{32}$ with a hexagonal lattice^{[2][3]} above 78 GPa and 2000 K. In other runs loaded with saturated water, the HH1-phase or pyrite-structured FeOOH, (x<1, Py-phase) was the stable phase independent on the iron valence state of the starting materials.

Formation of mixed-valence iron oxides and hydroxides suggests that the phase diagram in Fe-O-H system under high P-T conditions is more complex than previously thought. Future research should focus on understanding the role of water in the processes of deep oxygen-hydrogen cycle in the deep mantle.

[1] Ricolleau, A. & Fei, Y., (2016), *Am. Mineral.* **101**, 719–725. [2] Bykova, E. et al., (2016), *Nat. Commun.* **7**, 5–10. [3] Khandarkhaeva, S. *et al.*, (2021), *Inorg. Chem.*