Multi-isotope geochemical baseline study of the CMC Research Institutes CCS Field Research Station (Alberta, Canada), prior to CO₂ injection

RACHEL E UTLEY¹, **EMMA MARTIN-ROBERTS**¹, NICHOLAS UTTING², GARETH JOHNSON³, DOMOKOS GYORE⁴, MARTA ZURAKOWSKA⁵, FINLAY STUART⁴, ADRIAN BOYCE⁶, THOMAS DARRAH⁷, PAULINE GULLIVER⁶, KIRK OSADETZ⁸, DON LAWTON⁸, STUART HASZELDINE¹ AND STUART M V GILFILLAN¹

¹University of Edinburgh

²Natural Resources Canada

³University of Strathclyde

⁴Scottish Universities Environmental Research Centre (SUERC) ⁵UK Stone Doctor

⁶Scottish Universities Environmental Research Centre

⁷The Ohio State University

⁸Carbon Management Canada Inc.

Presenting Author: emma.martin-roberts@ed.ac.uk

Carbon capture and storage (CCS) is an industrial scale mitigation strategy for reducing anthropogenic CO_2 release to the atmosphere [1]. Geochemical monitoring tools are essential for verifying secure storage of CO_2 and detecting unplanned migration [2]. However, use of these tools critically depends on geochemical baselines being established prior to CO_2 injection.

Carbon Management Canada Inc., in collaboration with The University of Calgary, constructed a Field Research Station (FRS) for development and demonstration of monitoring technologies for the containment and migration of subsurface fluids, in particular CO_2 [3]. Consisting of multiple boreholes in Upper Cretaceous Belly River Group sediments, the site allows monitoring of gas phase CO_2 that has been injected into the Basal Belly River Sandstone and other gases throughout the storage complex.

We will present a multi-well gas and groundwater characterisation of the natural gas geochemical baseline at the FRS. All gas samples exhibit low CO_2 concentrations, with biogenic CH_4 occurring pervasively throughout the succession. FRS samples have elevated radiogenic ⁴He compared to the atmosphere. ⁴He concentrations are higher than modelled concentrations that can be generated from in-situ radioactive decay of U and Th within the bedrock stratigraphy. All samples lie on a mixing line between the atmosphere and natural gas in a reservoir below the FRS storage complex. This confirms an identifiable radiogenic contribution at the FRS.

We find that the injected CO_2 is depleted in He, Ne and Ar, yet enriched in ⁸⁴Kr and ¹³²Xe relative to ³⁶Ar, highlighting the potential use of inherent noble gas geochemical tracers in injected CO_2 at the FRS and elsewhere.

References

[1] Ringrose, P.S., et al. 2021. Storage of Carbon Dioxide in

Saline Aquifers: Physicochemical Processes, Key Constraints, and Scale-Up Potential. *Annual Review of Chemical and Biomolecular Engineering*, 12:1, 471-494. DOI: 10.1146/annurev-chembioeng-093020-091447

[2] Gilfillan et al., 2014. The application of noble gases and carbon stable isotopes in tracing the fate, migration and storage of CO₂. *Energy Procedia* 63, 4123-4133 DOI:10.1016/j.egypro.2014.11.443

[3] Lawton et al. 2019. Development and Analysis of a Geostatic Model for Shallow CO_2 Injection at the Field Research Station, Southern Alberta, Canada. *Geophysics and Geosequestration*, 280–296, DOI:10.1017/9781316480724.017