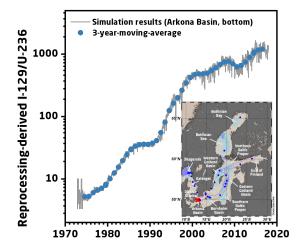
Deciphering the Ages of Saline Water in the Baltic Sea by Anthropogenic Radiotracers

DR. MU LIN, PHD¹, JUN SHE², JENS MURAWSKI², XIAOLIN HOU^{1,3} AND JIXIN QIAO¹

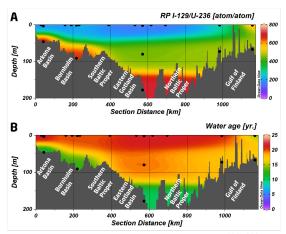
¹Technical University of Denmark ²Danish Meteorological Institute ³Institute of Earth Environment, CAS Presenting Author: mulin@env.dtu.dk

The slow water renewal of the Baltic Sea endows a strong "memory effect" retaining excessive pollutants and nutrients for decades. Deciphering the water ages of the Baltic Sea is of particular importance to understand the hydrodynamics of the Baltic Sea and the associated impacts on pollutant/nutrient dynamics. Even though the circulation timescale of the Baltic Sea has been resolved by 3D ocean model (Meier, 2007), the estimated water ages have never been directly verified due to the lack of suitable age tracers.

In this work, we estimated the ages of saline water in the Baltic Sea using two long-lived anthropogenic radionuclides ¹²⁹I and ²³⁶U released from two European nuclear reprocessing plants. Based on a 47-year hindcast simulation (1971-2017) with a 3D ocean model HBM, a monotonically increasing input function was established for the reprocessing-derived ¹²⁹I/²³⁶U ratio in the Baltic inflowing saline waters (**Figure 1**). The ages of saline water in the major sub-basins of the Baltic Sea were thereby constrained according to the observations of ¹²⁹I and reactor-derived ²³⁶U in 2015-2019 (Qiao et al., 2021; Lin et al., 2022).


In general, the distributions of reprocessing-derived $^{129}I/^{236}U$ ratios and tracer ages show a highly stratified structure in the Baltic Sea (**Figure 2**). In the southern and central Baltic Sea, the surface water are about 10 years older than the bottom water, suggesting that the upwelling and dilution of saline water are rather slow processes in the central Baltic Sea. This work not only provides the first observation-based results for the water ages in the Baltic Sea, but also demonstrates the great power of anthropogenic ¹²⁹I and ²³⁶U as oceanic tracers on investigating hydrodynamic processes of the Baltic Sea.

References


Meier, H.E. Markus. Modeling the pathways and ages of inflowing salt- and freshwater in the Baltic Sea. *Estuarine*, *Coastal* and *Shelf Science*, 2007, 74(4): 610-627.

Qiao, J., et al. An unknown source of reactor radionuclides in the Baltic Sea revealed by multi-isotope fingerprints. *Nature Communications*, 2021, 12: 823.

Lin, M., et al. Anthropogenic ²³⁶U and ²³³U in the Baltic Sea: Distributions, source terms, and budgets. *Water Research*, 2022, 210: 117987.

Figure 1. Simulated input function of reprocessing-derived ¹²⁹/²³⁶U ratio in the Baltic inflowing water (Arkona Basin: 54.93 °N, 13.54 °E; depth=45m). The ¹²⁹I discharge data are from HELCOM/OSPAR discharge database, and The ²³⁶U discharge data are reconstructed by Castrillejo et al. (2020).

Figure 2. Distributions of reprocessing-derived ¹²⁹/²³⁶U ratio (A) and estimated ages of saline water (B) in a transect from the Arkona Basin to Gulf of Finland in 2015-2019. The reprocessing-derived ¹²⁹/²³⁶U ratio ($R_{RP}^{129/236}$) is derived from the measured concentrations of ¹²⁹I, ²³⁶U, and ²³³U (c_{I-129} , c_{U-236} , and c_{U-233} ; atoms/L) using the following equation: $R_{RP}^{129/236} = c_{I-129}/(c_{U-236} - \frac{c_{U-233}}{0.014})$.