Isotopic characterization of abiotic methane in hydrothermal systems: An experimental study

QI FU¹, XUEZE CHEN¹, SHUHEI ONO² AND TAO SUN³

¹University of Houston

²Massachusetts Institute of Technology

³Rice University

Presenting Author: qfu5@central.uh.edu

To better understand the formation of abiotic methane in subseafloor hydrothermal systems, a series of laboratory experiments was performed. Dissolved carbon dioxide and hydrogen gases were introduced into a flow-through reactor with presence of a mineral catalyst (magnetite or bunsenite), analogous to a thermodynamically open system. The experiments were conducted at temperatures ranging from 150 to 300 °C and pressures up to 300 bars.

Methane was the predominant dissolved gas product, with less amount of ethane and propane generated in experiments. The carbon isotopic composition of CH₄ is more depleted in ¹³C than the starting CO₂, which has a δ^{13} C value of -38.2%. At 150 °C, the carbon isotope value of CH₄ is -82.5‰ and -80.6‰ after 24 and 200 hours of reaction, respectively, showing a trend of increase with time. The δ^{13} C value of dissolved CO₂ is -37.2‰ and -35.4‰ in the same time span. The fractionation factor between CO₂ and CH₄, $10^{3} \ln\alpha$ (CO₂-CH₄), is high than the equilibrium value (41.0) at 150 °C. The δ^{13} C value of C₂H₆ is lower than CH₄, -85.0‰ and -83.5‰, respectively. There is an "isotope reversal" of δ^{13} C values for CH₄ and C₂H₆, as observed in light alkanes of abiotic origin in geological environments. No carbon isotopic equilibrium between any pair of carbon-bearing compounds (dissolved CO₂, CH₄, and C₂H₆) has been reached at experimental temperatures, confirming the kinetic nature of abiotic hydrocarbon formation processes.

The variation of the hydrogen isotope value of CH₄ with reaction time is much subtle. The δ D value of CH₄ varies from – 518.5‰ to –519.9‰ at 150 °C, with the average value of – 519.1‰. There is an apparent positive relationship between the δ D value of CH₄ and temperature. The average δ D value of CH₄ increases from –519.1‰ at 150 °C to –405.5‰ at 300 °C.

The clumped isotope measurement ($\delta^{13}CH_3D$) of methane, which is currently in progress, may put more constraints on the formation of abiotic methane. Combined with generation kinetic data, those results would facilitate our understanding of the reaction mechanism of abiotic methane formation in hydrothermal systems and its contribution to the overall carbon cycle on Earth.