Microbe-mineral dynamics within a 'grass-to-glass' soil profile at a late Iron Age archaeological site with implications for long-term storage of nuclear waste glasses

JACQUELINE WELLS¹, ANDREW PLYMALE¹, CAROLYN PEARCE¹, EMILY GRAHAM¹, CHRISTOPHER BAGWELL¹, COLIN BRISLAWN¹, TANYA CHEEKE², VINCENT DANNA¹, SARAH FANSLER¹, BRUCE AREY¹, MARK BOWDEN¹, TAMAS VARGA¹, DANIELLE SAUNDERS¹, JESSICA ALLEN³, JOSE MARCIAL¹, KIMBERLY TYRRELL¹, JAMIE WEAVER⁴, ROLF SJÖBLOM⁵, EDWARD VICENZI⁶, JOHN S MCCLOY², EVA HJÄRTHNER-HOLDAR⁷, MIA ENGLUND⁷, ERIK OGENHALL⁸, DAVID PEELER¹ AND ALBERT KRUGER⁹

¹Pacific Northwest National Laboratory

³Eastern Washington University

⁴National Institute of Standards and Technology

⁵Luleå University of Technology

⁶Smithsonian Institution

⁷National Historical Museums (SHMM)

⁸Geoveta

⁹US Department of Energy, Office of River Protection

Presenting Author: jacqueline.wells@pnnl.gov

Immobilization of nuclear waste within silicate glasses for subsurface disposal is generally accepted as the best practice for final waste disposal. However, our complete understanding of glass weathering over relevant time scales is limited. Microbes alter glasses through mechanical and biochemical processes, with glass serving as a nutrient source for metabolic processes, and/or a substrate for biofilm growth. To study the behavior of silicate glass waste forms over long time scales in near-surface environments, archeological glass artifacts can be used as analogues to evaluate glass alteration due to the natural environment. In this study, samples obtained during a recent excavation of a Swedish vitrified hillfort were examined to determine the interactions of the anthropogenic glass and surrounding rock with the native soil and subsurface microbial communities over the past ~1500 years. The objective was to infer processes and microorganisms that could contribute to the weathering of anthropogenic materials as a function of depth in a "grass to glass" profile. Samples were interrogated by a suite of multidisciplinary techniques, including microscopy, tomography, X-ray diffraction, microbial sequencing, and biogeochemical measurements. Detailed characterization of the interface revealed relationships between the enriched microbial community on the vitrified material, and how it differed from the microbes present in the native rock and soil. Fungal and prokaryotic organisms associated with the vitrified wall layer have been implicated in mineral and glass weathering through mechanisms that control

the solubility of critical macro- and microelements. For example, fine material from one vitrified wall sample with an unusually high Archaeorhizomycetes fungal abundance was also depleted in several of these elements, in comparison with other fines samples from the same layer. Since microbial community composition is driven by changes in metabolic processes; from phototropism at the surface, to other energy sources (organic carbon, reduced nitrogen, iron, and manganese) beneath the surface, these sources will also drive mineral weathering and nutrient cycling. Our results indicate that microbial processes influence anthropogenically-engineered and natural materials through acquisition of nutrients, and provide information on long-term alteration of glass in contact with a near-surface environment, which is relevant to disposal of low activity nuclear waste.

²Washington State University