Atmospheric CO₂ removal rates using magnesium oxide powder

KWON RAUSIS, AMANDA R. STUBBS, IAN POWER AND CARLOS PAULO

Trent University

Presenting Author: kwonrausis@trentu.ca

Magnesium oxide (MgO) looping is a proposed negative emissions technology with the potential for gigatonne-scale CO₂ removal. Magnesite (MgCO₃) is calcined to MgO with high purity CO₂ being stored and the regenerated MgO being repeatedly used to capture CO₂ [1,2]. However, this technology's technical and economic feasibility depends on largely unknown carbonation rates. Therefore, the goal of this study was to determine carbonation rates in a laboratory-controlled environment. An MgO powder deposit (10 cm thick; 76 kg/m²) was tilled daily and exposed to wetting and drying cycles to simulate weathering over 5 months. CO₂ removal rates were independently determined by measuring CO₂ fluxes and total inorganic carbon (TIC). The MgO powder hydrated (80 wt%) to form brucite [Mg(OH₂)]. CO₂ fluxes were mainly depended on water content and porosity: -3.9 (saturated/wet), -12.5 (optimal), and -2.2 (dry) kg $CO_2/m^2/yr$. Optimal conditions for CO_2 removal were when the deposit had a porosity of 44-61% and water content of 7–17 wt%. Dypingite [Mg₅(CO₃)₄(OH)₂~5H₂O] was the sink of atmospheric CO2, and TIC increased from 0.2-3.8% CO₂. The δ^{13} C values of the solids (avg. -14.9% VPDB) were well below those expected for dypingite precipitated in equilibrium with atmospheric CO₂, demonstrating that CO₂ supply was rate-limiting, despite the daily mixing of the deposit. A linear extrapolation of the 5-month rates shows that only 3-18% of the MgO would react in 1 yr and require areas of 80,000-455,000 km² to sequester 1 Gt CO₂/yr. At these rates, 90% carbonation of MgO would require 5-27 yr. However, this linear extrapolation likely underestimates the time needed for complete carbonation as it does not account for the progressive depletion of reactants (MgO/brucite) that will cause rates to slow. Continued monitoring of the MgO deposit over 1 yr will help refine carbonation rates. Although MgO looping is an innovative approach to CO₂ removal, rates will need to be accelerated to make this approach a competitive alternative to existing direct air capture technologies.

[1] McQueen et al. 2020. Nat. Commun. 11, 3299. [2] Kelemen et al. 2020. Chem. Geol. 550, 119628.