A re-evaluation of the Al-in-Olivine geothermometer

YISHEN ZHANG¹, OLIVIER NAMUR¹, BERNARD CHARLIER², WEIRAN LI³, OLIVER SHORTTLE³, ESTEBAN GAZEL⁴, ELEANOR JENNINGS⁵, PETER THY⁶ AND TIMOTHY GROVE⁷

¹KU Leuven

²University of Liège
³University of Cambridge
⁴Cornell University
⁵Birkbeck, University of London
⁶University of California, Davis
⁷Massachusetts Institute of Technology
Presenting Author: yishen.zhang@kuleuven.be

Thermal and chemical exchanges between Earth's mantle and the lithosphere, e.g. mantle convection or upwelling plumes, are thought to generate voluminous magmas in large igneous provinces (LIPs). The Al-in-olivine geothermometer, which is based on Al partitioning between coexisting olivine and spinel, is a robust tool to constrain mantle source temperature [1, 2]. The geothermometer does not require any estimation of melt compositions and benefits from the slow diffusion rate of Al_2O_3 in olivine, thus minimizing the effect of re-equilibration at low temperature. The Al-in-olivine geothermometer has thus been widely used to investigate the temperature of terrestrial and extraplanetary rocks.

In this study, we re-evaluate and extend the calibration by performing 46 new experiments with an extended range of melt compositions and reanalyzed 21 published experiments with high precision measurements. The final calibration set (training dataset: 92; test dataset: 24) spans a wide range of temperature (1174-1606 °C), pressure (0-1.35GPa), oxygen fugacity (fO_2) (QFM-2.5 to QFM+7, where QFM = quartz-favalite-magnetite buffer), and H₂O content (0-7.4 wt%). We regressed two thermometers from two algorithms, one follows a thermodynamic formalism, the other empirical one follows the formalism of Coogan et al. (2014). The results show that besides the Al partitioning in olivine and spinel, the spinel compositions have a significant effect on the empirical equation but not on thermodynamic formalized equation, which indicates an underestimation of the interplay between fO_2 , and melt compositions in the empirical equation. Water has an insignificant effect on the thermometers, while a weak correlation with pressure is observed but it is not significant for the application on the current natural database. Applications to natural rocks of LIPs suggest that previous studies generally overestimated the crystallization temperature by \sim 40-60 °C. More refractory harzburgite components may exist in the mantle of intra-plate LIPs to compensate the lower potential temperatures.

References

[1] Wan et al. (2008). Am. Mineral. 93, 1142-1147.

[2] Coogan et al. (2014) Chem. Geol. 368, 1-10.