In situ 4D dendritic crystallization in basaltic magmas reveals how magma mobility occurs within the Earth's crust

FABIO ARZILLI¹, MARGHERITA POLACCI², GIUSEPPE LA SPINA³, NOLWENN LE GALL⁴, EDWARD W LLEWELLIN⁵, RICHARD A BROOKER⁶, RAFAEL TORRES-OROZCO⁷, DANILO DI GENOVA⁸, DAVID NEAVE², MARGARET HARTLEY², HEIDY M MADER⁶, DANIELE GIORDANO⁹, ROBERT ATWOOD¹⁰, PETER D LEE⁴, FLORIAN HEIDELBACH⁸ AND MIKE R BURTON²

Presenting Author: arzilli.fabio@gmail.com

The mobility of basaltic magma within the Earth's crust is controlled by magma viscosity. Crystallization and crystal morphology affect the viscosity, mobility and ultimately eruptibility of magma, by locking it at depth or enabling its ascent towards the surface. However, relationships between crystallinity, rheology and eruptibility remain uncertain because of the challenges associated with documenting magma crystallization in real time. Here we show, for the first time, the results of in situ 3D time-dependent, high temperature experiments performed under water-saturated conditions to investigate crystallization kinetics in a basaltic magma at crustal pressure. In situ four-dimension (4D) (3D plus time) crystallization experiments were performed using synchrotron Xray microtomography. This new 4D approach provides unique quantitative information on the growth kinetics and textural evolution of pyroxene crystallization in basaltic magmas, quantifying dendritic growth on initially euhedral cores and revealing surprisingly rapid increases in crystal fraction and aspect ratio at undercoolings ≥30 °C. Such crystallization favours a rheological transition from Newtonian to non-Newtonian behaviour within minutes. We applied a numerical model to quantify the effect of dendritic crystallization on basaltic dike propagation towards the surface. Modelling results show that dendritic crystallization can strongly affect magma rheology during magma ascent with important implications for the mobility of basaltic magmas within the crust.

¹University of Camerino

²University of Manchester

³Istituto Nazionale di Geofisica e Vulcanologia-Osservatorio Etneo

⁴University College London

⁵Durham University

⁶University of Bristol

⁷Universidad Veracruzana

⁸University of Bayreuth

⁹University of Torino

¹⁰Diamond Light Source