A high field strength perspective on tungsten-182 variability in modern mantle melts

VALERIE FINLAYSON¹, RICHARD J WALKER¹, KATHERINE BERMINGHAM², PROF. JAMES M.D. DAY³ AND MANUEL E. SCHILLING⁴

¹University of Maryland

²Rutgers, The State University of New Jersey
³Scripps Institution of Oceanography
⁴Universidad Austral de Chile

Presenting Author: vfinlays@umd.edu

Hafnium-182 is a short-lived ($t_{1/2} = -9$ Myr) radionuclide that undergoes double-beta decay to ¹⁸²W. It was extant for only ~60 Myr after Solar System formation. Variations in the ¹⁸²W/¹⁸⁴W ratio of natural materials record primordial metal-silicate and/or silicate-silicate differentiation processes. Recently, small (up to ~-25 ppm) deficits in ¹⁸²W/¹⁸⁴W (expressed as μ^{182} W) of modern ocean island basalts have been found to correlate with elevated ³He/⁴He, suggesting that "anomalous" source mantle reservoirs, common yet minor consitutents of many plumes, have remained less degassed than other mantle reservoirs whose derivative melts are characterized by normal μ^{182} W and lower ³He/⁴He. The μ^{182} W-³He/⁴He association has been suggested to result from core-mantle interaction, but early silicate differentiation and subsequent long-term isolation of some portion(s) of the lowermost mantle is a viable alternative explanation.

One geochemical aspect that has remained unexplored with respect to the origin of W anomalies is whether they can be correlated with anomalous enrichments in certain high field strength elements with similar silicate partitioning characteristics. Notably, the so-called "TITAN" anomaly (elevated Ti, Ta, and Nb) has been linked to melts with elevated ${}^{3}\text{He}/{}^{4}\text{He}$. The Nb-Y-Zr system, which can be expressed as δNb , is a measure of Nb enrichment/deficit compared to a global array. Combining published and new μ^{182} W values, and trace element data for a globally-representative set of samples, we find that TITAN basalts occupy a restricted range in Nb-Y-Zr space, and that δNb and $\mu^{182}W$ may be correlated. This correlation may indicate that this component formed early in Earth history and remained largely isolated in the lower mantle. The near-ubiquity of this geochemical signature in plumes, however, remains unexplained, meriting further integrated studies to understand the role of early-differentiated reservoirs in mantle convection plumes.